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The course

The main topics of the second half of “Advanced course in foundations of
mathematics” are
■ history of Mathematics
■ an introduction to first order logic
■ computable functions
■ limiting results

ä Peano arithmetic
ä Gödel’s incompleteness theorems
ä natural incompleteness results

■ constructive Mathematics
ä λ calculus
ä type theories
ä propositions-as-types interpretation
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Teaching

I will mainly teach sharing those slides, which are available via Moodle and at
the website

https://robertabonacina.com/advanced-course-in-foundations-of-
mathematics

Questions and interactions in general are welcome!
Feel free to interrupt me at any time during the lectures, or to write in the
chat.
You can also contact me by email at roberta.bonacina@fsci.uni-tuebingen.de
or roberta.bonacina@univr.it.
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Syllabus

History of Mathematics and its foundations:
■ developments of Mathematics
■ foundational crisis
■ constructive mathematics
■ recent results
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History of Mathematics

The history of Mathematics is the background to justify why and how
Mathematical logic, and in particular the research of a foundation of
Mathematics, developed.
The fundamental idea of theorem, a statement wich holds because its truth is
achieved by correct reasoning, has been introduced by the Pythagorean school.
Important to mention are: Heraclitus, who introduced the term logos to mean
reasoning, and Zeno of Elea, who introduced reductio ad absurdum, that is,
proof by contradiction, and analysed the idea of infinity in its famous
paradoxes.
A turning point was Aristotele’s Organon, in which he introduced the theory
of syllogism, the first formal system. His work emphasises the formal nature
of reasoning, and he was the first to deal with the principles of contradiction
and excluded middle in a systematic way.
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Modality and abstraction

The stoic school, mainly Chrysippus, introduced the notion of modality, the
theory of conditionals, which led to a systematic understanding of implication
as a connective, and the relation between meaning and truth, posing the basis
for semantics.
Centuries later, after the fall of the Roman Empire, and when Islam saw its
golden age, the works of Al-Farabi, Ibn Sina (Avicenna) and others introduced
further developments of the Greek tradition, in particular identifying the basis
of modal and temporal logics. In particular Avicenna’s “ma’na”, the notion of
sign in the mind that does not necessarily represent an existing thing, is the
first attempt to capture the nature of abstract or ideal objects.
Although interesting, we skip over Medieval logic as its influence in
Mathematical logic is minor, but it was fundamental to frame the basic of
scientific reasoning.
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Descartes

The Greek geometric tradition and the algebraic tradition, mainly developed
in the Islamic world and in the early Italian school, merged together in the
outstanding work of Descartes, with his analytic geometry. The importance of
this contribution is difficult to overestimate: the notions of curve and figure
become first class objects, which could be described by equations, no longer
limiting the domain of geometry to lines, circles, and conics.
Also, the notion of space is a natural consequence of Descartes’ work: it is
the set of points which can be described by coordinates, tuples of numbers of
fixed length. It was possible to conceive multi-dimensional spaces and to
smoothly apply the algebraic methods to them.
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Newton and Leibniz

Then Newton and Leibniz invented mathematical analysis. For Newton, this
was the language in which to express his theory of gravitation, in fact, the
milestone that marks the born of Science. In fact, Newton developed the
calculus of fluxions by basing it on Euclidean geometry, trying to make it well
founded, justified in the Euclid’s sense. Oppositely Leibniz wanted an agile
system: today, we still use his notation for integrals and derivatives. This more
intuitive approach, based on infinitesimals, was extremely influencing, and, in
fact, dominated the development of Mathematics till the 19th Century.
Leibniz also conceived the idea of characteristica universalis, an attempt to
devise a formal theory of thought, allowing to mechanically calculate the act
of reasoning. This ideas anticipate symbolic logic with striking insights, like
using the prime factorisation theorem to code propositions, anticipating
Gödel’s numbering.
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Analysis

At the beginning of the 19th Century, analysis was dominating mathematics,
and it has become a very abstract field, a character that become predominant
in Mathematics. This race for abstraction revealed a number of deep
problems: functions in their full generality were defeating intuition, causing
doubts on proofs. In fact, most of stunning achievements of analysis simply
failed for general functions, showing that limits, continuity, derivation and
integration are subtle concepts which require precise definitions. In turn, these
definitions failed because mathematicians realised that the very notion of real
number was inadequately understood.
This crisis eventually led to modern mathematical analysis: Bolzano’s,
Dedekind’s, Cauchy’s constructions of real numbers out of rationals; the
notion of limit, continuity, and the definition of derivatives and integrals in
formal terms. This immense effort due to Gauss, Cauchy, Weierstrass,
Riemann, Dedekind an many others cleared the foundations of analysis but
also showed that many fundamental mathematical concepts, taken for
granted, required further study.
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Algebra and geometry

In the first half of the 19th Century a revolution started in the mathematical
world: the advent of abstract algebra, and the discovery of non-Euclidean
geometries.
In algebra, Abel and Galois developed group theory, providing a deep insight
on the solution of polynomial equations. In fact, they were the first ones to
provide limiting results: they showed that no general algebraic method can
exist for solving polynomial equations of degree greater than four.
In geometry, Gauss, Bolyai, and Lobachevsky developed alternative models of
spaces in which the parallel postulate does not hold. Then, Riemann vastly
generalised the idea showing how every space admits a geometry which best
describes it, whose lines are the geodetic, the curves of minimal length
between a pair of points.
Klein, later, has shown the bridge between geometry and algebra: a geometry
is, in fact, a group of transformations acting on a space.
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Abstraction

The sudden raise in abstraction, the availability of novel and powerful
instruments in algebra, and the pressure from analysis led to a deeper study of
the fundamental ingredients of mathematical thinking: spaces, numbers, sets.
The need for a general notion of space going beyond the Euclidean intuition
eventually led to topology. The study of numbers led to abstract away what
was not needed in their definition, to keep their essential properties in a
domain: this process led to abstract algebra, the notions of groups, rings,
fields, vector spaces. The study of the notion of set by Cantor is particularly
relevant to us. By comparing sets through functions, Cantor discovered that
the idea of infinite is not unique: he showed that real numbers are more
numerous than natural numbers, leading to the notion of cardinality.
In algebra, we have to mention the work of Boole, who invented an algebraic
system to represent logical propositions in the sense of Aristotle. This is the
starting point, together with Cantor’s work, of a new discipline, Mathematical
Logic.
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Frege and Russell

Gottlob Frege in his Begriffsschrift (1879) introduced variables, quantifiers,
and a rigorous treatment of functions, basing on intuitive set theory.
His purpose was to show that arithmetic is a branch of logic, and no intuition
is needed to understand it, an approach which takes the name of Logician in
philosophy. Also, his work can be considered the first attempt to provide a
rigorous foundation to the whole Mathematics.
A principle used by Frege is the axiom of unlimited comprehension: if P is a
formula depending on just x , then R := {x :P(x)} is a set. In 1903, Bertrand
Russell wrote a letter to Frege in which his famous paradox shows how Frege’s
system is inconsistent, as it contains a contradiction.
Consider R := {x |x 6∈R}. Then R ∈R if and only if R 6∈R. This contradiction
cannot be avoided but dropping that axiom.
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Hilbert

In 1889, Giuseppe Peano defined a formal theory for arithmetic which bears
his name. He and Dedekind recognised induction as the characterising
principle of natural numbers.
In 1899, David Hilbert developed a complete set of axioms for Euclidean
geometry (Grundlagen der Geometrie), which makes formal Euclid’s Elements.
In 1900, at the International Conference of Mathematicians, David Hilbert
posed a list of 23 problems. For example, two of them required to resolve the
Continuum Hypothesis and to find method to decide whether a multivariate
polynomial equation over the integer has a solution.
The solution to these problems and their consequences are some of the
fundamental results in Mathematical logic and foundations of Mathematics.
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Hilbert

Hilbert’s program aimed at developing a theory of Mathematics to provide a
solid, definitive foundations. The pillar of his programs were
■ formalisation: all mathematical statements have to be written, at least in
principle, in a precise formal language and manipulated according to a
fixed, precise and formal set of rules;

■ consistency: the whole corpus of Mathematics have to be proved to be
contradiction free by means of a formal proof inside Mathematics itself;

■ finitistic: the language, the rules of inference, and the proofs have to be
finite and effective (i.e., possible to calculate mechanically). In particular,
the consistency proof has to be finitistic.
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Sets, types, limiting results

Ernst Zermelo in 1908 introduced a formal system for set theory, in which the
Axiom of Choice is stated for the first time. Later Abraham Fraenkel added
the Axiom of Replacement obtaining ZFC, which is usually regarded as the
reference for formal set theory.
In 1910, the first volume of Principia Mathematica by Russell and Whitehead
appeared. This monumental work is an attempt to reconstruct the whole
Mathematics from a single formal system, avoiding internal contradictions. It
is based on a peculiar form of type theory.
Leopold Löwenheim (1915) and Thoralf Skolem (1920) obtained limiting
results, summarised in their Theorem, saying that the first order theories
cannot influence the cardinality of their infinite models. Skolem went so far to
realise that formal set theory must have a countable model, which is
completely counterintuitive.
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Gödel

In 1929, Kurt Gödel proved the Completeness Theorem for first order logic in
his doctoral dissertation. As a consequence, he derived compactness, which
proves the finitary nature of first order systems.
In 1931, On formally undecidable propositions of Principia Mathematica and
Related Systems was published. This is a milestone in human knowledge. In
that work, Gödel proved that every sufficiently strong yet effective system is
either inconsistent or contains a true but unprovable statement. He also
showed that the consistency of such a formal system is one of those
unprovable statements, giving a negative answer to Hilbert’s program and
closing the efforts of Russell and Whitehead’s quest for a universal system.
In 1936, Gerard Gentzen proved the consistency of Peano arithmetic using
methods which could not be formalised in Peano arithmetic itself; he proved it
in a finitistic system together with the principle of transfinite induction up to
the ε0 ordinal, which can be considered a measure of the proving power of
arithmetic. This result introduced also cut-elimination. In fact, this is the
starting point of Proof Theory.
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Constructive Mathematics

In the ’20s, the notion of computability was in the air. Early works, like the
definition of function by Schönfinkel, eventually led Gödel, Turing, Kleene and
Church to recognise that effective systems and computable functions are two
faces of the same coin. In particular, the notion of computable function
proved to be very robust, leading to the Church-Turing thesis, and eventually
generated an entirely new discipline: Computer Science.
It is worth noting how the solution of the Halting Problem (i.e., that
determining whether a program will terminate or not is undecidable), posed
by Hilbert in 1928, is strictly related to Gödel’s incompleteness result and the
existence of non-computable functions.
An important turnpoint in logic was Intuitionism, a philosophical line of
thought promoted by Brouwer and formalised by Heyting. This line
emphasises constructions as the building blocks of Mathematics. In time, it
turned out that intuitionistic logic is strictly related with computability and
plays a fundamental role in the foundation of Mathematics, for example, in
topos theory.
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Recent developments

At this point in history, around 1940, it becomes difficult to keep track of
developments and achievements. We limit ourselves to mention
■ the impact of category theory, which ultimately leads to abandon sets in
favour of a more abstract but also more regular algebraic structure;

■ the impact of type theories as the computational counterparts of
constructive formal systems, which have recently been shown to have strict
links with algebraic topology in Homotopy type theory;

■ the development of ordinal analysis to classify theories and problems
according to the proving power, essentially extending and generalising the
limiting results;

■ the immense amount of logics which have been studied: modal, temporal,
epistemic, deontic, paraconsistent, many-valued, fuzzy just to name a few
with their semantics, proof theory, and an ever growing amount of
applications in every field.
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Syllabus

First order logic:
■ Language
■ Substitution
■ Natural deduction
■ Informal meaning
■ Semantics
■ Soundness, completeness and compactness
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Language

Definition 2.1 (Signature)
A signature Σ= 〈S;F ;R〉 is composed by
■ a set S of symbols for sorts.
■ a set F of symbols for functions. Each symbol f ∈ F is uniquely associated
with a type s1×·· ·× sn → s0, with si ∈ S for each 0≤ i ≤ n. When n= 0, we
say that f is a constant of type s0.

■ a set R of symbols for relations. Each symbol r ∈R is uniquely associated
with a type s1 ×·· ·× sn, with si ∈ S for each 1≤ i ≤ n.

The notation f : s1 ×·· ·× sn → s0 ∈ F and r : s1 ×·· ·× sn ∈R means that f is a
function symbol whose type is s1 ×·· ·× sn → s0, and r is a relation symbol
whose type is s1 ×·· ·× sn, respectively. Also, we require that S, F , and R do
not contain the logical connectives and quantifiers.

A signature describes a first-order language: sorts stand for collections of
elements, functions are used to denote elements, while relations are used to
form basic formulae.
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Language

Example 2.2
The signature

N = 〈{N} ; {0 : N,S : N→N;+ : N×N→N, · : N×N→N} ; {= : N×N}〉

specifies the basic language for arithmetic. There is one sort, which, in the
intended interpretation, stands for the collection of natural numbers. There is
a constant, 0, denoting the zero natural number, there is a function S, which
stands for ‘successor’, denoting the next natural number, so that, in the
intended interpretation, S(5)= 6, while the functions + and · denote addition
and multiplication.
There is only one relation symbol, denoting equality.
Of course, the theory of arithmetic should be devised in such a way that, as
far as possible, the formal behaviour, that is, what we can prove, conforms to
the intended interpretation.

( 23 of 205 )



Terms

The first-order language has two purposes: to provide a syntax to denote
elements in the universe, i.e., in the collections denoted by the sorts, and to
provide a syntax to denote properties of those elements.
The first issue is addressed by terms.

Definition 2.3 (Term)
Let Σ= 〈S;F ;R〉 be a signature, and let V be an infinite set of symbols,
called variables, such that V ∩ (S ∪F ∪R)=;. Also, assume that each
variable x ∈V has a uniquely associated type s ∈ S, denoted by x : s. We
require that there is an infinite amount of variables for each type s ∈ S.
A term, along with the set of its free variables, is inductively defined as:
■ if x : s ∈V , then x is a term of type s, and FV(x)= {x };
■ if f : s1 ×·· ·× sn → s0 ∈F and t1, . . . ,tn are terms of type s1, . . . ,sn,
respectively, then f (t1, . . . ,tn) is a term of type s0, and
FV(f (t1, . . . ,tn))=⋃n

i=1FV(ti ).
We use the notation t : s to say that the term t has type s.
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Terms

Example 2.4
Using the signature N of arithmetic, 0, S(0), S(S(0)), . . . are terms of type
N. Also +(x ,0) and ·(x ,+(S(0),S(S(0)))) are terms of type N. Notice how
x +0 and x(1+2) are not terms.
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Formulae

As terms are used to denote elements, formulae are used to denote properties
of elements.

Definition 2.5 (Formula)
Fixed a signature Σ= 〈S; F ;R〉 and a set of variables as for terms, a formula,
along with the set of its free variables, is inductively defined as
■ > and ⊥ are formulae, and FV(>)=FV(⊥)=;.
■ if r : s1 ×·· ·× sn ∈R is a relation symbol, and t1 : s1, . . . ,tn : sn are terms,
then r(t1, . . . ,tn) is an atomic formula, and FV(r(t1, . . . ,tn))=⋃n

i=1FV(ti ).
■ if A and B are formulae, so are ¬A, A∧B, A∨B, and A⊃B, and
FV(¬A)=FV(A), FV(A∧B)=FV(A∨B)=FV(A⊃B)=FV(A)∪FV(B).

■ if x : s is a variable and A is a formula, so are ∀x : s .A and ∃x : s .A, and
FV(∀x : s .A)=FV(∃x : s .A)=FV(A) \ {x }.
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Formulae

Notice that in quantified formulae the variable is not free. We say that
quantified variables are bounded.
The notion of bounded variable is not new: for example, the expression∫ b

a f (x)dx does not really depend on the variable x . In fact, the x is a
placeholder, to give some name to the argument of the f function. A
bounded variable does not denote a value, but rather it acts as a placeholder
which allows to write a formula or a term. Its meaning is controlled by the
quantifier, and not by the way variables are interpreted, as in the integral, the
x does not denote a real or complex number, but rather what is allowed to
vary in the function.
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Substitution

Variables are subject to a fundamental operation: substitution. In fact, from a
formula A where the variable x appears free, we may obtain another formula,
A[t/x ], where the term t is substituted for x . For example, in the language of
arithmetic, x can be substituted in x +0= x to obtain 2+0= 2.
Substitution is fundamental in describing the inference rules governing
quantifiers. And bounded variables make substitution not immediately
intuitive.
There are many equivalent ways to describe the substitution operation: we
will use a method which is not the most immediate, but it will become very
handy later in the course.
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Substitution

Definition 2.6 (Substitution on terms)
Fixed a signature and a term t on it, the substitution of the variable x : s with
the term r : s, yielding t[r/x ], is defined by induction on the structure of the
term t:
■ if t ≡ x , then t[r/x ]= r ;
■ if t is a variable, but t 6≡ x , t[r/x ]= t;
■ if t ≡ f (t1, . . . ,tn), then t[r/x ]= f (t1[r/x ], . . . ,tn[r/x ]).
Notice that the substitution operation is defined only when r and x share the
same type.
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Substitution

Definition 2.7 (Substitution on formulae)
Fixed a signature and a formula A on it, the substitution of the variable x : s
with the term t : s, yielding A[t/x ], is defined by induction on the structure of
the formula A:
■ if A≡> or A≡⊥, then A[t/x ]=A;
■ if A≡ r(t1, . . . ,tn), then A[t/x ]= r(t1[t/x ], . . . ,tn[t/x ]);
■ if A≡¬B, then A[t/x ]=¬B[t/x ];
■ if A≡B∧C , A≡B∨C , or A≡B ⊃C , then A[t/x ]=B[t/x ]∧C [t/x ],
A[t/x ]=B[t/x ]∨C [t/x ], or A[t/x ]=B[t/x ]⊃C [t/x ], respectively;

■ if A≡∀y : r .B, or A≡∃y : r .B, and y : r ≡ x : s, then A[t/x ]=A;
■ if A≡∀y : r .B, or A≡∃y : r .B, and y : r 6≡ x : s, then
A[t/x ]=∀z : r .(B[z/y ])[t/x ], or A[t/x ]=∃z : r .(B[z/y ])[t/x ],
respectively, where z : r 6∈FV(B)∪FV(t).
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Substitution

The first clauses in the definition are obvious: we substitute the variable x
with the term t where it appears.
The last but one clause means that a bounded variable cannot be substituted:
this is simple to understand, as it does not make sense to substitute x with 5
in the formula ∃x : N.x2 = x3. In fact, the formula is true, because 12 = 1= 13,
but, evidently, it happens just for some values of x , which the existential
quantifier is meant to single out.
The last clause is a bit cryptic. It says that, before performing the
substitution of x with t on the quantified formula B, we should rename the
quantified variable y with a new variable, which does not appear in B and t.
An example may clarify why this must be done: let A≡∃x : N.x +y = 2y , and
let t ≡ 2x . If we do not rename variables, A[t/y ] would give
∃x : N.x +2x = 2(2x), that is, ∃x : N.3x = 4x . We notice the A holds
whenever x = y , but A[t/y ] does not. The problem is that the x in t and the
one in A should be kept distinct—and we do this by renaming before
performing the substitution.
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Natural deduction

Definition 2.8 (Theory)
Fixed a language, a theory T is a set of formulae, each one usually referred to
as an axiom.
When T =;, we will speak of the theory as pure logic.

Definition 2.9 (Proof)
Fixed a language and a theory T in it, a proof or deduction of the formula A,
the conclusion, from a set Γ of formulae, the hypotheses or assumptions, is
inductively defined by a set of inference rules summarised in the next slides.
A formula A which is the conclusion of a proof with no assumptions, is called
a theorem in the theory T .
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Natural deduction

The inference rules governing conjunctions are:

A B
∧I

A∧B
A∧B

∧E1A
A∧B

∧E2B

we have an introduction rule and two elimination rules.
Those governing disjunctions are:

A
∨I1A∨B

B
∨I2A∨B

A∨B

[A]
·····
C

[B]
·····
C

∨E
C
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Natural deduction

Implication and negation are subject to the following rules:

[A]
·····
B

⊃I
A⊃B

A⊃B A
⊃E

B

[A]
·····
⊥

¬I¬A
¬A A

¬E⊥

( 34 of 205 )



Natural deduction

True and false are governed by the following rules:

>I>
⊥

⊥E
A

If A is an axiom of the theory T , i.e., if A ∈T , we are allowed to deduce it:

ax
A

If A is an assumption, i.e., if A ∈ Γ, we can deduce it

A
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Natural deduction

For every formula A, either A is true or it is false. This is expressed by the
Law of Excluded Middle:

lem
A∨¬A

The Law of Excluded Middle is delicate, and it has a special status. Indeed it
is used in classical logic, but not in intuitionistic logic.
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Natural deduction

The rules for universal quantification are

A
∀I∀x : s .A

∀x : s .A
∀E

A[t/x ]

provided that
■ in ∀E , t is a term of type s;
■ in ∀I, the variable x : s does not occur free in the proof of the antecedent,
which means that, for every assumption G , x : s 6∈FV(G). This condition
is, sometimes, referred to by saying that x : s is an eigenvariable.

Notice the similarity between the rules for ∀ and for ∧.
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Natural deduction

Similarly, the rules for existential quantification are

A[t/x ]
∃I∃x : s .A

∃x : s .B

[B]
·····
A

∃E
A

provided that
■ in ∃I, t is a term of type s;
■ in ∃E , the variable x : s does not occur free in the proof of the second
antecedent, that is, for every assumption G in the second subproof, except
for B, x : s 6∈FV(G) and x 6∈FV(A). Again, x : s is said to be an
eigenvariable. Notice how this inference rule discharges the assumption B.

Notice the similarity between the rules for ∃ and for ∨.
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Natural deduction

Equality is a special relation, and this is captured in a series of ad-hoc
inference rules. When the language has an equality relation for some sort s, it
is subject to the following rules:

refl∀x : s .x = x
sym∀x : s .∀y : s .x = y ⊃ y = x

trans∀x : s .∀y : s .∀z : s .x = y ∧y = z ⊃ x = z
A[t/x ] t = r

subst
A[r/x ]

fun∀x1 : s1. . . .∀xn : sn.∃!z : s0.z = f (x1, . . . ,xn)

where, t and r are terms of type s, and f : s1 ×·· ·× sn → s0 is a function
symbol of the language.
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Informal meaning

Fixed a signature 〈S;F ;R〉, the intended interpretation of a sort s ∈ S is a
specific set; the intended interpretation of a function symbol is a function;
and the intended interpretation of a relation symbol is a relation.
The intended meaning of equality, = : s × s, when present in the language, is
the identity of its arguments.
Thus, the intended meaning of a term is an element, which is identified via
the interpretation of functions and the evaluation of variables, in the universe,
the collection of all the sets denoted by sorts.
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Informal meaning

In turn, formulae stands for a truth value, either true or false.
Atomic formulae, r(t1, . . . ,tn), are true when the argument (t1, . . . ,tn) is in the
relation denoted by r .
A formula is universally valid, that is, ∀x : s .A holds, when A is true in
whatever way we interpret x as an element of the set denoted by s.
Symmetrically, a formula is existentially valid, that is, ∃x : s .A holds, when
there is an element e in the set denoted by s such that interpreting x as e
makes A true.
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Semantics

The standard semantics for first-order logic, due to Alfred Tarski, directly
formalises the intended interpretation.

Definition 2.10 (Σ-structure)
Let Σ= 〈S;F ,R〉 be a first-order signature.
Then, a Σ-structure M = 〈U;F ;R〉 is composed by
■ a collection U = {us }s∈S of non-empty sets, called the universe,
■ a collection of functions over the universe

F = {
gf : us1 ×·· ·×usn → us0 | f : s1 ×·· ·× sn → s0 ∈F

}
,

■ a collection of relations over the universe
R = {

ρr : us1 ×·· ·×usn | r : s1 ×·· ·× sn ∈R}
.
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Semantics

To make clear the relation between a signature and a Σ-structure, we use the
following notation:
■ for each s ∈ S, JsK= us ;
■ for each f : s1 ×·· ·× sn → s0 ∈F , Jf K= gf ;
■ for each r : s1 ×·· ·× sn ∈R, JrK= ρr .
This is called the interpretation of the signature in the Σ-structure.
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Semantics

Definition 2.11 (Interpretation of terms)
Let Σ= 〈S;F ,R〉 be a signature, and let M be a Σ-structure, with the
notation as before. Also, let ν= {νs }s∈S be a collection of functions
νs : {v : v : s ∈V } → JsK, mapping the variables of type s into the
corresponding set JsK.
Then, a term t is interpreted according to the following inductive definition on
its structure:
■ if t ∈V is a variable of type s, then JtK= νs(t);
■ if t ≡ f (t1, . . . ,tn), then JtK= Jf K(Jt1K, . . . ,JtnK).
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Semantics

Definition 2.12 (Interpretation of formulae)
Let Σ= 〈S;F ,R〉 be a signature, let M be a Σ-structure, and let ν be an
evaluation of variables, with the notation as before.
Then, a formula A is interpreted according to the following inductive
definition on its structure:
■ if A≡>, JAK= 1;
■ if A≡⊥, JAK= 0;
■ if A≡ r(t1, . . . ,tn), JAK= 1 if (Jt1K, . . . ,JtnK) ∈ JrK, and JAK= 0 otherwise;
■ if A≡¬B, A≡B∧C , A≡B∨C , A≡B ⊃C , then JAK is defined as in the
truth-table semantics;

■ if A≡∀x : s .B or A≡∃x : s .B, let ξ= {ξs }s∈S be an evaluation of variables
such that, ξα = να, for each α 6= s, and ξs(v)= νs(v) for each v 6= x . Then,
J∀x : s .BK= 1 if, for all the possible ξ, JBK= 1, and J∀x : s .BK= 0
otherwise. Also, J∃x : s .BK= 1 if, there is a ξ such that JBK= 1, and
J∃x : s .BK= 0 otherwise.
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Semantics

We stipulate that, when equality is in the language, Jt1 = t2K= 1 exactly when
Jt1K= Jt2K.
If one prefers, J=sK, the equality on the sort s, represents the diagonal
relation

{
(x ,x): x ∈ JsK

}
.

It is worth remarking that equality is always typed: t1 = t2 is a valid formula if
and only if t1 and t2 are terms of the same sort s, and the relation = should
be read as a shorthand for =s , which stands for the diagonal relation on the
set denoted by the sort s.
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Properties of the semantics

Definition 2.13 (Validity)
A formula A is valid or true in a Σ-structure M together with an
interpretation ν of variables, when JAK= 1.
A set of formulae is valid or true when each formula in the set is valid.

Definition 2.14 (Model)
Given a signature Σ for a theory T , a model for it is a Σ-structure together
with an interpretation of variables ν which makes true the theory T .
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Properties of the semantics

Theorem 2.15 (Soundness)
Given a model for T which makes true the assumptions in the finite set ∆, if
A is the conclusion of a proof π from ∆ in T , then A is valid.

Theorem 2.16 (Completeness)
If every model for which the finite set of assumptions Γ makes A true, then
Γ`A.

Theorem 2.17 (Compactness)
For any set of formulae Γ, if every finite subset of Γ has a model, then Γ has
a model too.
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A good text which introduces the first-order language in a formal way is John
Bell and Moshé Machover, A Course in Mathematical Logic, North-Holland,
(1977), ISBN 0-7204-28440, which covers our treatment of definitions, too.
Natural deduction is described in many textbooks. This lesson follows A.S.
Troelstra and H. Schwichtenberg, Basic Proof Theory, Cambridge Tracts in
Theoretical Computer Science 43, Cambridge: Cambridge University Press,
(1996).

CC© BY:© $\© C© Roberta Bonacina 2021

( 49 of 205 )



References

The illustrated interpretation of formulae has been formalised first by Alfred
Tarski. This is a classical definition, and it can be found in most textbooks.
The notion of model, that is, a Σ-structure which satisfies all the axioms in a
theory, is analysed in depth in the branch of Logic called model theory. A
standard reference is C.C. Chang and H.J. Keisler, Model Theory, Studies in
Logic and the Foundations of Mathematics, 3rd edition, Elsevier, (1990),
ISBN 008088007X. Nevertheless, this text is quite dated, and an introduction
to the basics of contemporary model theory can be found in W. Hodges, A
Shorter Model Theory, Cambridge University Press, (1997),
ISBN 0-521-58713-1.
The soundness theorem is a classical result and its proof can be found in most
textbooks. For example, the already cited John Bell and Moshé Machover, A
Course in Mathematical Logic, North-Holland, (1977), ISBN 0-7204-28440.

CC© BY:© $\© C© Roberta Bonacina 2021

( 50 of 205 )



References

The first completeness proof for first-order logic has been given by Kurt Gödel.
In John Bell and Moshé Machover, A Course in Mathematical Logic,
North-Holland, (1977), ISBN 0-7204-28440, is presented a proof which uses
the techniques introduced by Leon Henkin.
Gödel’s proof was his doctoral dissertation, and it is based on a obscure
formalism. Henkin’s proof is a substantial reorganisation of Gödel’s proof,
emphasising that it involves the construction of a model.

CC© BY:© $\© C© Roberta Bonacina 2021

( 51 of 205 )



Advanced course in foundations of mathematics
Part 3

Dr Roberta Bonacina

roberta.bonacina@fsci.
uni-tuebingen.de

University of Tübingen
Carl Friedrich von Weizsäcker

Center

a.a. 2020/21

roberta.bonacina@fsci.uni-tuebingen.de
roberta.bonacina@fsci.uni-tuebingen.de


Syllabus

Computability:
■ Motivation
■ Recursive functions
■ Main properties
■ Comparing sets

( 53 of 205 )



Motivation

Computability theory is the branch of logic which studies the notion of
‘computation’. Generally, it is considered in the borderline between
mathematics and theoretical computer science, but, at least historically, it has
been the part of logic from which computer science was born.
From a mathematical point of view, describing what can be really computed
is an essential part of the XX Century’s mathematics. Consider the notion of
algorithm and how fundamental it revealed in many fields.
For logicians, computability theory is an essential ingredient to understand the
reasons behind constructive mathematics. But it is also the fundamental tool
to prove the results about the limit of formal reasoning.
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Computable functions
Computability theory aims at describing the functions N→N which can be
effectively calculated.
We notice how the vast majority of functions from naturals to naturals cannot
be calculated. In fact, if we think that calculation is a process which
mechanically transforms the argument of a function in its result, we have to
pose a few limits on this process:
■ it must take a finite amount of time;
■ it must operate on a finitely generated formal language;
■ it must rely on a finite description of the process which precisely describes
the steps to be performed.

At least, we have a language on a finite alphabet, which is used to describe
the process. No matter how we interpret the language, we know that the set
of all the possible procedures is contained in the collection of finite sequences
of symbols in the alphabet. So, the set of all possible procedures is in
bijective correspondence with N: it can’t be bigger because the alphabet is
finite, nor smaller since se may write an infinite amount of procedures. But
most functions are not computable; indeed, the cardinality of the set of
functions from N to N is 2|N|, which is strictly greater than |N|.
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Computable functions

There are many ways to describe computations. For our purposes, which are
not aimed at studying computations, but rather using the computable
functions to reason about what can be effectively proved inside a formal
system, we will use partial recursive functions.
In fact, we admit a computation may not terminate, hence partial functions,
in which non termination is modelled as the function being undefined for the
non terminating input.
Instead of using some abstract machine which ‘performs’ the computation, we
will directly define computable functions as the class of functions that can be
written in a special form. Although it is not immediately clear that this class
contains all the computable functions, it is best suited to application in logic.
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Primitive recursive functions

Definition 3.1 (Primitive recursive functions)
A function f : Nk →N is primitive recursive when
1. f is the zero function 0(n)= 0 for all n ∈N;
2. f is the successor function succ(n)= n+1 for all n ∈N;
3. f is a projection function Uk

i (n1, . . . ,nk)= ni with k ≥ 1, 1≤ i ≤ k;
4. f is obtained by substitution: if g ,h0, . . . ,hm are primitive recursive

functions, f (n1, . . . ,nk)= g (h0(n1, . . . ,nk), . . . ,hm(n1, . . . ,nk));
5. f is obtained by primitive recursion: if g and h are primitive recursive

functions, f (n1, . . . ,nk ,0)= g(n1, . . . ,nk) and
f (n1, . . . ,nk ,m+1)= h(n1, . . . ,nk ,m, f (n1, . . . ,nk ,m)).

It is clear that primitive recursive functions are computable. It is also evident
that there are computable functions which are not primitive recursive: for
example, the function undefined everywhere.
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Primitive recursive functions

Example 3.2
The identity function id(x)= x is primitive recursive: id=U1

1 .

Example 3.3
The constant function k(x)= k is primitive recursive. In fact, by induction on
k, if k = 0, 0 is primitive recursive by definition; if k = k ′+1, k = succ◦k ′ by
substitution, and k ′ is primitive recursive by induction hypothesis.

Example 3.4
Addition, multiplication and exponentiation are primitive recursive.

n+0= n n ·0= 0

n+ (m+1)= succ
(
U3

3 (n,m,n+m)
)

n · (m+1)= n+0(m)+n ·m

n0 = 1(n)
nm+1 = n ·1(m) ·nm

Notice how 00 = 1, which sounds odd.
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Primitive recursive functions

Example 3.5
The predecessor function, defined by

pred(n)=
{
n−1 when n> 0
0 otherwise

is primitive recursive: pred(0)= 0(0), and pred(n+1)=U2
1 (n,pred(n)).

Example 3.6
The recursive difference, defined by

m .−n=
{
m−n if m≥ n
0 otherwise

is primitive recursive: m .−0=m and m .− (n+1)= pred(m .−n).
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Primitive recursive functions

Example 3.7
The absolute difference |m−n| is primitive recursive:

|m−n| = (m .−n)+ (n .−m) .

Example 3.8
The sign function, defined by

sg(n)=
{
0 if n= 0
1 otherwise

is primitive recursive: sg(0)= 0(0), and sg(n+1)=U2
2 (n,1(n)).

Similarly, integer division, the remainder function, integer logarithm are
primitive recursive.
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Primitive recursive functions

There are functions which are computable but not primitive recursive.

Definition 3.9 (Ackermann)
The Ackermann’s function A is defined as

A(m,0)=m+1
A(0,n+1)=A(1,n)

A(m+1,n+1)=A(A(m,n+1),n) .

To give an impression: A(0,0)= 1, A(1,1)= 3, A(2,2)= 7, A(3,3)= 61, but

A(4,4)= 2265536
.

The function N→N given by n 7→A(n,n) can be shown to grow faster than
any primitive recursive function, so it is not primitive recursive.
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Partial recursive functions

Definition 3.10 (Partial recursive functions)
A partial function f : Nk →N is recursive when
1. f is the zero function 0(n)= 0 for all n ∈N;
2. f is the successor function succ(n)= n+1 for all n ∈N;
3. f is a projection function Uk

i (n1, . . . ,nk)= ni with k ≥ 1, 1≤ i ≤ k;
4. f is obtained by substitution: if g ,h0, . . . ,hm are partial recursive functions,

f (n1, . . . ,nk)= g (h0(n1, . . . ,nk), . . . ,hm(n1, . . . ,nk));
5. f is obtained by primitive recursion: if g and h are partial recursive

functions, f (n1, . . . ,nk ,0)= g(n1, . . . ,nk) and
f (n1, . . . ,nk ,m+1)= h(n1, . . . ,nk ,m, f (n1, . . . ,nk ,m));

6. f is obtained by minimalisation: if g is a partial recursive function, then
f (n1, . . . ,nk)=µm. (g(n1, . . . ,nk ,m)= 0), with µm.P(m)=m0 if and only if
P(m0) holds, and, for all m<m0, P(m) does not.

We will speak of recursive functions when we will consider only computable
total functions.
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Partial recursive functions

Definition 3.11
Let S be a set and R a relation. The characteristic functions of S and R are
given by

χS(x)=
{
1 if x ∈ S
0 if x 6∈ S

χR(x1, . . . ,xn)=
{
1 if (x1, . . . ,xn) ∈R
0 otherwise

We say that S or R is recursive when χS or χR are total recursive functions.
We say they are primitive recursive when the corresponding characteristic
functions are.

Example 3.12
The relation ≤⊆N×N is primitive recursive: χ≤(n,m)= 1 .− sg(n .−m).
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Partial recursive functions

Example 3.13
If P and Q are (primitive) recursive relations on Nk , then so are ¬P, P ∧Q,
and P ∨Q.

χ¬P(x1, . . . ,xk)= 1 .−χP(x1, . . . ,xk)
χP∧Q(x1, . . . ,xk)=χP(x1, . . . ,xk) ·χQ(x1, . . . ,xk)
χP∨Q(x1, . . . ,xk)= sg(χP(x1, . . . ,xk)+χQ(x1, . . . ,xk)) .

Example 3.14
Every finite set is primitive recursive.

Example 3.15
If R and S are primitive recursive subsets of N, so are N\R, R ∩S, and R ∪S.
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Partial recursive functions

Proposition 3.16
If R(n1, . . . ,nk ,m) is a recursive relation, then f : Nk →N defined by

f (n1, . . . ,nk)=µm.R(n1, . . . ,nk ,m)

i.e., the least m such that R(n1, . . . ,nk ,m) holds, is partial recursive.

Proof.
Immediate by noticing that f (n1, . . . ,nk)=µm. (χ¬R(n1, . . . ,nk ,m)= 0).

Church-Turing Thesis
A function f : Nk →N is computable exactly when f is partial recursive.
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Comparing sets

Comparing two sets means to establish a correspondence between them. A
function, mapping all the elements of one set in the element of another does
not say much. But, when the function is bijective, we may think that the two
sets are equal except for a renaming of the elements in their extensions. We
write A∼=B to indicate that there is bijective map between the sets A and B.
Intuitively, a set A is smaller than a set B when it can be embedded into B
modulo a renaming: formally, this intuition is modelled by the existence of an
injective function A→B. Symmetrically, A is greater than B when there is a
surjective function A→B.
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Comparing sets

This way of comparing sets is the standard, and it works as one expects when
dealing with finite sets. But, on infinite sets, it reveals that sets are far more
complex objects than we may imagine at a first sight.

Theorem 3.17 (Schröder-Bernstein)
If f : A→B is injective and g : B→A is injective then A∼=B.

Proof. (i)
Let C0 =A\g(B) and, by induction, Cn+1 =

{
g(x): x ∈Dn

}
and

Dn = {
f (x): x ∈Cn

}
. Define

h(x)=
{
f (x) if x ∈Cn for some n
g−1(x) otherwise

This definition makes sense, as g is injective and g−1(x) is defined on g(B).
,→
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Comparing sets

,→ Proof. (ii)
Now, let us prove that h is bijective, i.e., A∼=B.
Let x ,y ∈A. Suppose h(x)= h(y): if x ∈Cm and y ∈Ck for some m and k,
then f (x)= f (y), so x = y being f injective; if x 6∈Cn and y 6∈Cn for any n,
then g−1(x)= g−1(y), so x = y being g injective; if x ∈Cm for some m and
y 6∈Cn for any n, f (x)= g−1(y), so (g ◦ f )(x)= y , that is, y ∈Cm+1, which is
impossible. Thus h is injective.
We must show that h(A)=B. Firstly, for any n and any z ∈Dn, z = f (x) for
some x ∈Cn, so, by definition, z = h(x). Then, let z ∈B \

⋃
nDn. Evidently, by

induction on n, g(z) 6∈Cn for any n, thus h(g(z))= g−1(g(z))= z . So h is
surjective.
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Comparing sets

Example 3.18
Let P = {2n : n ∈N}. Since f : P →N such that f (x)= x is injective, and
g : N→P such that g(x)= 2x is injective, by Theorem 3.17 we conclude that
P ∼=N.
In general, an infinite set A is such that it is possible to find a proper subset
B ⊂A such that A∼=B. We can even use this property as a definition of being
infinite.
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Comparing sets

Example 3.19
N×N∼=N
Evidently, the function f : N→N×N mapping x 7→ (x ,x) is injective.
Oppositely, the function g : N×N→N defined as
g(x ,y)= (x +y)(x +y +1)/2+y is injective, as it is easy to prove. Informally,
it counts the pairs using diagonals which justifies the claim of being injective:
the formal proof is just arithmetic.
Thus, by Theorem 3.17 the result follows.

By induction, it follows that Nk ∼=N for any k > 0.
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Comparing sets

Example 3.20
The collection of finite sequences of naturals N∗ ∼=N
Obviously, the function f : N→N∗ mapping x 7→ {x } is injective.
Oppositely, calling gn : Nn →N the bijection from the Cartesian product of
n≥ 1 copies of N to N, we may define a function h : N∗ →N×N by
h({xi }1≤i≤n)= (n,gn(x1, . . . ,xn)). For n= 0, let h(;)= (0,0).
Evidently, h is injective since gn is, for each n≥ 1. So, the composition g2 ◦h
is injective, and the result follows by Theorem 3.17.
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Comparing sets

Example 3.21
℘(N) 6∼=N.
This result, which specialises a famous Theorem by Cantor, says that the
collection of subsets of N is not in bijection with N. The proof is a classical
masterpiece that introduces a technique called diagonalisation.
We can identify each subset A⊆N with its characteristic function
χA : N→ {0,1}. Suppose that all these functions are in bijection with N: then,
there is a bijective function e which enumerates them. So, we have a
sequence ℘(N)∼= {

χAi

}
i∈N such that the i-th function is given by e(i).

Define a function ∆ : N→ {0,1} as ∆(x)= 1−χAx (x). Thus ∆ must appear
somewhere in the sequence, i.e., ∆=χAk for some k ∈N. Which is impossible
since χAk (k)=∆(k)= 1−χAk (k) and χAk ∈ {0,1}. Hence, the characteristic
functions are not in bijection with N, that is, ℘(N) 6∼=N.
As a side effect, since the functions N→ {0,1} are in evident bijection with the
real interval [0,1], we get that R>N strictly. In other words, infinity is not
unique!
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Comparing sets

Let us recall what we said at the beginning about computable functions. The
language used to describe the process is based on a finite alphabet, and the
set of all the possible procedures is contained in the collection of finite
sequences of symbols in the alphabet.
Hence, by Example 3.20 it is at most in bijective correspondence with N.
Indeed, the set of all possible procedures is exactly in bijection with N,
because we can write an infinite amount of procedures.
Conversely, by Example 3.21, it is clear that not all functions N→N can be
written in this language.
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Universal function

Theorem 3.22 (Enumeration)
There is a partial recursive function e(x ,y) that enumerates all the partial
recursive functions, that is, defining φx (y)= e(x ,y),

{
φx

}
x∈N is the collection

of all the partial recursive functions.

Proof. (i)
In the first place, we notice that, since, for any k ∈N, Nk ∼=N and the
bijection is computable, we may safely reduce to enumerate the computable
functions N→N.
Partial recursive functions can be coded as naturals:
■ [0]= 2;
■ [succ]= 3
■ [Uk

i ]= 5 ·17k ·19i ;
■ substitution:

[g (h0(n1, . . . ,nk), . . . ,hm(n1, . . . ,nk))]= 7 ·17[g ] ·19[h0] · · · · ·p[hm]
7+m, with{

pi
}
i∈N the sequence of prime numbers; ,→
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Universal function

,→ Proof. (ii)
■ primitive recursion: [f ]= 11 ·17[g ] ·19[h];
■ minimalisation: [f ]= 13 ·17[g ].
The coding is injective, so invertible, thanks to the unique factorisation in
primes of any natural number. Moreover, it is computable, and the inverse is
computable, too. Precisely, the coding is primitive recursive, as it is
immediate to check.
Defining ⊥ as the partial function which is everywhere undefined, we can
invert the [_] coding:

φn =
{
f if there is f such that[f ]= n
⊥ otherwise

Since ⊥(x)=µm.(1(x)= 0), the decoding is computable.
Then, e(x ,y)=φx (y). It enjoys the enumeration property by
construction.
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Universal function

Proposition 3.23
There is no {fx }x∈N of all total computable functions which admits an
enumeration function e(x ,z)= fx (z).

Proof.
Consider the function h(x)= fx (x)+1. It is total, since each fx is.
Assume there is a recursive function e enumerating {fx }x∈N. Then,
h(x)= e(x ,x)+1, so h is recursive.
But h also occurs in {fx }x∈N, so there is k ∈N such that fk = h.
Thus, h(k)= e(k ,k)+1= fk(k)+1= h(k)+1, hence 0= 1, a contradiction.
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Universal function

Theorem 3.24
Let m,n≥ 1. Then, there is a computable function Sm

n : Nm+1 →N such that

fα(x1, . . . ,xm,y1, . . . ,yn)= fSm
n (α,x1,...,xm)(y1, . . . ,yn) .

Although we will not prove the theorem, we want to remark its meaning: it
shows that considering some arguments as parameters is an admissible
operation in the computational world.
We can start the study of computable functions by considering an
enumeration of them, which has a couple of properties: being computable,
and satisfying the Sm

n theorem. Then

Theorem 3.25 (Turing, 1936)
There is a computable partial function U : N2 →N such that fn(x)=U(n,x).
Such a function is called universal, and it is the first computer. But this is
another story. . .

( 77 of 205 )



Fixed points

Theorem 3.26 (Kleene)
If f is a computable partial function, then exists k ∈N for which φf (k) =φk in
any good enumeration of the partial recursive functions.
Proof.
Let h(x)=φx (x). This partial function is computable because it can be
written as h(x)=U(x ,x). Then, f ◦h is computable, too. So, f ◦h=φe for
some e ∈N.
Therefore, φf (h(e)) =φφe(e) =φh(e). Thus k = h(e) is the sought fixed
point.
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Peano arithmetic

Peano arithmetic is the standard formal theory describing natural numbers
and their properties.
It is composed by a series of axioms, divided into groups, and it is interpreted
in classical first order logic.
The very same theory, interpreted in intuitionistic first order logic is called
Heyting arithmetic. Despite they are syntactically identical, their
interpretations are quite different. For example, in Peano arithmetic it is
possible to show that there are functions which cannot be computed, while
every function which can be proved to exist in Heyting arithmetic, is
computable, because of the constructive nature of the logic.
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Peano arithmetic

Peano arithmetic is based on the language generated by the the signature

〈{N} ; {0 : N,S : N→N,+, · : N×N→N} ; {= : N×N}〉 .

The first group of axioms defines what is a natural number:

∀x ,y .S x = S y ⊃ x = y ; (1)

∀x .S x 6= 0 . (2)

The idea is that natural numbers are the elements of the free algebra
generated by 0 and S. The successor function S, given a number x , calculates
the next number, x +1. So natural numbers are written in the unary
representation, and they are naturally equipped with a total order structure
with minimum.
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Peano arithmetic

The second group of axioms define addition and multiplication:

∀x .0+x = x ; (3)

∀x ,y .S x +y = S(x +y) ; (4)

∀x .0 ·x = 0 ; (5)

∀x ,y .S x ·y = x ·y +y . (6)

It is worth remarking the inductive nature of these definitions.
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Peano arithmetic

The third and last group of axioms is a schema: for any formula A,

A[0/x ]∧ (∀x .A⊃A[S x/x ])⊃∀x .A (7)

This schema formalises induction on the structure of natural numbers:
■ if A holds on 0
■ and, assuming that A holds on x , we can show that it holds on S x ,
■ then, A holds for every x ∈N.
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Induction

There is a link between induction and recursion: an inductive definition
induces a recursive procedure that allows to calculate/generate the defining
objects, and vice versa, a recursive procedure induces an inductive definition
of its results.

Example 4.1
The axioms (3) and (4) provide a recursive schema that allows to calculate
the addition:

x +y = if x = 0 then y else let x = S z in S(z +y) ;

Conversely, we may say that the result of the sum is identified by induction of
the first summand.
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Standard model

The standard model for Peano arithmetic is the structure which interprets the
signature as
■ the unique sort into the set of natural numbers, denoted by N;
■ the function symbols into the zero number, the successor function, and the
usual addition and multiplication, respectively.

Any model, i.e., any pair (M ,σ) is said to be standard when M is the
structure above while no restriction is posed on the evaluation σ of variables.
Although it may be confusing, we adopt the standard notation which uses the
same symbols to denote the formal elements of the syntax, and their intended
interpretation. In any standard model, this convention makes no difference.
Since the purpose of the theory of arithmetic is to characterise the class of
standard models, it would be nice if these were the only models of the theory.
Unfortunately, this is not the case.
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Non-standard models

Definition 4.2 (Non-standard model)
Any structure N on the language of Peano arithmetic which is not
isomorphic to the standard model M but, for any evaluation σ of variables is
a model (N ,σ) of Peano arithmetic, is called a non-standard model.
In the definition above, an isomorphism between structures f : N →M is
■ an invertible function between the universes;
■ for each term t, f (JtKN )= JtKM .
If a non-standard model exists, it means that there is a structure N which
makes Peano arithmetic true but interprets some term into an element e in
the universe which cannot be mapped in some natural number.
Notice that the element e must be the image of a term under the
interpretation function: so, for example, the real numbers consisting of all the
non-negative integers, is not a non-standard model, even if it is constructed
in a very different way from the naturals (all the reals are a quotient of
Cauchy sequences).
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Non-standard models

Proposition 4.3
There is a non-standard model for Peano arithmetic.
Proof. (i)
Define S0(0)= 0, and S i+1(0)= S S i (0). Evidently the term Sn(0) gets
interpreted in n in any model.
Let Σn = {

x 6= S i (0): i < n
}
be a collection of formulae, and let Σ=⋃

n∈NΣn.
Calling M the structure of the standard model, and defining σn such that
σn(x)= n, evidently the standard model (M ,σn) makes Σn valid, together
with all the axioms of Peano arithmetic.
Thus, any finite A⊂Σ has a model, because it is contained in Σn for some n.
Thus, by the Compactness Theorem 2.17, Σ has a model (N ,σ) which makes
true also all the axioms of Peano arithmetic. ,→
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Non-standard models

,→ Proof. (ii)
In this model, σ(x) 6= n for any n ∈N because JSn(0)KN = n but x 6= Sn(0)
occurs in Σ, so, by definition of interpretation, σ(x) 6= JSn(0)KN .
Hence, there is an element k 6∈N such that σ(x)= k. But interpreting x on
M leads to some n ∈N, whatever evaluation of variables we may choose. So,
any function mapping N to M has to be non-invertible on the term x .
Thus, (N ,σ) is a model of Peano arithmetic, which is not isomorphic to any
standard model, so it is non-standard.
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Discussion

The existence of a non-standard model for Peano arithmetic shows that this
theory does not describe exactly the natural numbers and their properties
which can be expressed in the language. Here, not exactly means not only.
The first thought is to try to complete Peano arithmetic to prevent the
construction of a model like the (N ,σ) above. Clearly, the shape of the
proof, using the Compactness Theorem, does not allow to obtain this result in
a direct way.
However, it is not evident whether the existence of a non-standard model is
disturbing: we cannot use the proof of Proposition 4.3 to write a formula
which holds in the non-standard model while it does not in any standard
model. In fact, we used this property to synthesise the non-standard model
from the standard ones.
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Discussion

Of course, we can use a theory to separate the non-standard model from any
standard one: this is exactly the purpose of the Σ theory in Proposition 4.3.
But, still, it is not clear whether there is closed formula, i.e., a formula with no
free variables, allowing to separate standard models from non-standard ones.
This would be crucial, since such a formula φ does not depend on the
evaluation of variables, thus its truth value would be defined by the structure
of the model only. In a sense, φ, if it exists, cannot be provable, even if it is
true in any standard model, because it would be false in some non-standard
model, thus, by the Soundness Theorem, it cannot be proved.
If such a φ exists, it means that we have a way to separate models within the
theory of Peano arithmetic, just by adding a single axiom, φ, or its
complement, ¬φ.
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Proof in natural deduction

We prove using the inference rules of first order logic a result which will be
useful in the following: `A=¬¬A

[¬A]1 [A]2
¬E⊥

¬I1¬¬A
⊃I2

A⊃¬¬A

lem
A∨¬A [A]1

[¬A]1 [¬¬A]2
¬E⊥

⊥E
A

∨E1

A
⊃I2¬¬A⊃A

Notice that the proof of ¬¬A⊃A uses the law of excluded middle, hence the
result holds in classical logic, but not in intuitionistic logic. That’s why
intuitionism refuses proofs by contradiction.
As an exercise, prove `¬A=¬¬¬A without using the law of excluded middle.
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Representable entities

Definition 4.4 (Numerals)
Given n ∈N, the numeral n representing n is defined as 0≡ 0, and n+1≡ S n.

Definition 4.5 (Representation)
A relation R ⊆Nk is representable in Peano arithmetic if and only if there is a
formula φ such that
■ if (n1, . . . ,nk) ∈R then `PA φ(n1, . . . ,nk);
■ if (n1, . . . ,nk) 6∈R then `PA ¬φ(n1, . . . ,nk);
where `PA means ‘provable in Peano arithmetic’.
A function f : Nk →N is representable in Peano arithmetic if the relation
R = {

(n1, . . . ,nk ,m): m= f (n1, . . . ,nk)
}
is representable.

A set S ⊂N is representable in Peano arithmetic if its characteristic function is
representable.
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Representable entities

Example 4.6
Equality is representable in Peano arithmetic.

Proposition 4.7
If the relations P ,Q ⊆Nk are representable in Peano arithmetic, so are ¬P,
P ∧Q, and P ∨Q.
Proof.
Since P and Q are representable, there are φP and φQ as in Definition 4.5.
So, (n1, . . . ,nk) ∈¬P if and only if (n1, . . . ,nk) 6∈P. Thus, ¬φP represents ¬P,
because ¬¬φP(n1, . . . ,nk)=φP(n1, . . . ,nk).
Also, (n1, . . . ,nk) ∈P ∧Q if and only if (n1, . . . ,nk) ∈P and (n1, . . . ,nk) ∈Q.
Thus, φP∧Q =φP ∧φQ . Similarly, φP∨Q =φQ ∨φQ .
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Representable entities

Proposition 4.8
The 0 function is representable.

Proof.
Since 0 : N→N, we have to find a formula representing
Z = {

(n,m): m= 0(n)
}
. Consider φ0(x ,y)≡ (y = 0).

■ If (n,m) ∈Z , then m= 0(n), so m= 0. Thus, φ0(n,m)≡ (m= 0)≡ (0= 0),
so `PA φ0(n,m), by reflexivity.

■ If (n,m) 6∈Z , then m 6= 0(n), so m 6= 0. Thus, m≡ S m′ and
φ0(n,m)≡ (m= 0)≡ (S m′ = 0), so `PA ¬φ0(n,m), by axiom.
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Representable entities

Example 4.9
The successor and projection function are representable. So are also addition
and multiplication.

Example 4.10
If g and ho , . . . ,hk are representable, so is f obtained by substitution.

Example 4.11
If g is representable, so is f obtained by minimalisation.

Example 4.12
Addition and multiplication are representable.
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Representable entities

Theorem 4.13
All recursive functions are representable in Peano arithmetic.

Corollary 4.14
All recursive sets and relations are representable in Peano arithmetic.

These proofs can be found in Elliott Mendelson, Introduction to Mathematical
Logic, CRC Press. The proof is by induction on the structure of partial
recursive functions and it is far too complex to be detailed here: in fact, it is
usually absent in most textbooks.
But it is a constructive proof: given a partial recursive function f , it provides
an effective method to build a formula representing f .
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Exercise

Write a proof in Peano arithmetic that every n ∈N is equal or greater than
zero, where n≥m is defined as ∃x .m+x = n.
Discuss what happens if one defines n≥m as ∃x .x +m= n.
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Syllabus

Limiting results:
■ Gödel’s First Incompleteness Theorem
■ The idea behind the proof
■ Coding terms
■ Coding formulae
■ Gödel’s Second Incompleteness Theorem
■ Meaning and consequences
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Induction, again

The induction principle says that, fixed a property P ⊆N, if 0 ∈P and, for any
n ∈N, if n ∈P then n+1 ∈P, then P =N.
Clearly, the induction schema (7) in Peano arithmetic is just an approximation
of the real induction principle: since

∣∣℘(N)
∣∣= 2|N| while the collection of

formulae on the language of arithmetic has cardinality |N|, we have not
enough formulae to represent all the possible properties.
The gap between what can be formalised and what is the intended meaning
about the structure of natural numbers, the induction principle at the first
place, is responsible for non-standard models.
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Incompleteness theorem

Theorem 5.1 (Gödel’s Incompleteness Theorem)
Let T be an effective theory which is consistent, and able to represent all the
recursive functions. Then, there is a closed formula G such that T 6`G and
T 6` ¬G.

A theory is said to be consistent when it does not happen that both A and
¬A are derivable for any formula A, and effective when the set of axioms is
recursive, that is, applying a coding to its axioms so that they become a set
of numbers, this set is recursive.
A coding of Peano arithmetic, or, more in general, of recursive functions, is a
total map g from the expressions of the syntax (terms, formulae, proofs) to N
such that
■ g is injective;
■ g is recursive;
■ g−1 on the image of g is recursive, too.
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Strategy

The proof of the incompleteness theorem is complex. It has a difficult part,
the fixed point lemma, and a lot of technicalities.
The strategy is to consider the sentence “this sentence is not provable”.
■ we will show that there is a coding function that maps terms, formulae
and proofs into natural numbers;

■ hence, it is possible to write a formula which says “there is a number p
which is the code of a proof of the sentence x”;

■ negating that formula, we can express the fact that x is not provable;
■ we will show a fixed point theorem saying that there exists a fixed point of
the transformation which maps each sentence x to the code of the
sentence expressing that x is not provable;

■ thus, the sentence G becomes the formula stating that x is not provable
with x substituted with the fixed point;

■ the meaning of G is that G is not provable;
■ but G must be true in the standard model, otherwise the theory would be
contradictory, so the result follows.
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Coding terms

In the following, for the sake of simplicity, we will assume the set of variables
in the language of Peano arithmetic to be V = {xi : i ∈N}.

Definition 5.2 (Coding terms)
The Gödel’s coding function g on terms is inductively defined as follows:
■ g(0)= 2 ·3;
■ g(xi )= 2 ·32 ·5i+1;
■ g(S t)= 2 ·33 ·5g(t);
■ g(t + s)= 2 ·34 ·5g(t) ·7g(s);
■ g(t · s)= 2 ·35 ·5g(t) ·7g(s).

Thanks to the theorem saying that natural numbers admit a unique
factorisation in primes, g is computable, injective, and g−1 is computable.
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Coding terms

A few remarks are needed:
■ each code for a term is of the form 2 ·n, with n odd;
■ the exponent of the factor 3 tells whether the term is 0, a variable, a
successor, a sum, or a multiplication;

■ the parameters of a term, i.e., the index of the variable, or the arguments
of the successor, of the sum, or the multiplication, are the exponents of
the factors 5 and 7, in that order.

Hence, intuitively, it is possible to write a formula in Peano arithmetic that
tells whether its argument is a code of a term. This can be formalised by
showing that the set of codes for terms is recursive, so that Corollary 4.14
yields the result.
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Coding formulae

Definition 5.3 (Coding formulae)
The Gödel’s coding function g on formulae extends the coding of terms and it
is inductively defined as follows:
■ g(>)= 22 ·3;
■ g(⊥)= 22 ·32;
■ g(t = s)= 22 ·33 ·5g(t) ·7g(s);
■ g(¬A)= 22 ·34 ·5g(A);
■ g(A∧B)= 22 ·35 ·5g(A) ·7g(B);
■ g(A∨B)= 22 ·36 ·5g(A) ·7g(B);
■ g(A⊃B)= 22 ·37 ·5g(A) ·7g(B);
■ g(∀x .A)= 22 ·38 ·5g(A) ·7g(x);
■ g(∃x .A)= 22 ·39 ·5g(A) ·7g(x).

Again, the coding g is computable, injective, and g−1 is computable, too.
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Coding formulae

A few remarks are needed:
■ each code for a formula is of the form 22 ·n, with n odd, so we can
separate the codes of terms from the ones of formulae just looking the
exponent of the factor 2;

■ the exponent of the factor 3 tells which kind of formula the code
represents;

■ the parameters of a formula are the exponents of the factors 5 and 7, in
that order.

Hence, intuitively, it is possible to write a formula in Peano arithmetic that
tells whether its argument is a code of a formula. This can be formalised by
showing that the set of codes for formulae is recursive, so that Corollary 4.14
yields the result.
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Coding sequences

Definition 5.4 (Coding finite sequences)
The Gödel’s coding function g of a finite sequence n1, . . . ,nk of natural
numbers is g(n1, . . . ,nk)= 23 ·∏1≤i≤k pni+1

i+1 , with pj the j-th prime number.

It is clear that the coding function is injective, computable, and its inverse is
computable, too. Also, the codes for sequences can be separated by the codes
of terms and formulae, and the set of codes for sequences can be represented,
in the sense of Corollary 4.14, by some formula of Peano arithmetic.
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Coding proofs

Definition 5.5 (Coding proofs)
The Gödel’s coding function g on proofs extends the previous coding g and it
is inductively defined as:

■ g
(
π1 : Γ`A π2 : Γ`B

∧I
A∧B

)
= 24 ·3 ·5g(π1 : Γ`A) ·7g(π2 : Γ`B) ·13g(A∧B);

■ g
(
π : Γ`A∧B

∧E1A

)
= 24 ·32 ·5g(π : Γ`A∧B) ·13g(A);

■ g
(
π : Γ`A∧B

∧E2B

)
= 24 ·33 ·5g(π : Γ`A∧B) ·13g(B);

■ g
(
π : Γ`A

∨I1A∨B

)
= 24 ·34 ·5g(π : Γ`A) ·13g(A∨B);

■ g
(
π : Γ`B

∨I2A∨B

)
= 24 ·35 ·5g(π : Γ`B) ·13g(A∨B);

,→
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Coding proofs

,→ (Coding proofs)

■ g
(
π1 : Γ`A∨B π2 : Γ,A`C π3 : Γ,B `C

∨E
C

)
=

24 ·36 ·5g(π1 : Γ`A∨B) ·7g(π2 : Γ,A`C) ·11g(π3 : Γ,B`C) ·13g(C);

■ g
(
π : Γ,A`B

⊃I
A⊃B

)
= 24 ·37 ·5g(π : Γ,A`B) ·13g(A⊃B);

■ g
(
π1 : Γ`A⊃B π2 : Γ`A

⊃E
B

)
= 24·38·5g(π1 : Γ`A⊃B)·7g(π2 : Γ`A)·13g(B);

■ g
(
π : Γ,A`⊥

¬I¬A
)
= 24 ·39 ·5g(π : Γ,A`⊥) ·13g(¬A);

■ g
(
π1 : Γ`¬A π2 : Γ`A

¬E⊥
)
= 24 ·310 ·5g(π1 : Γ`¬A) ·7g(π2 : Γ`A) ·13g(⊥);

■ g
(

>I>
)
= 24 ·311 ·13g(>);

,→
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Coding proofs

,→ (Coding proofs)

■ g
(
π : Γ`⊥

⊥E
A

)
= 24 ·312 ·5g(π : Γ`⊥) ·13g(A);

■ g
(

lem
A∨¬A

)
= 24 ·313 ·13g(A∨¬A);

■ g
(
π : Γ`A

∀I∀x .A

)
= 24 ·314 ·5g(π : Γ`A) ·13g(∀x .A) ·19g(x);

■ g
(
π : Γ`∀x .A

∀E
A[t/x ]

)
= 24 ·315 ·5g(π : Γ`∀x .A) ·13g(A[t/x ]) ·17g(t) ·19g(x);

■ g
(
π : Γ`A[t/x ]

∃I∃x .A

)
= 24 ·316 ·5g(π : Γ`A[t/x ]) ·13g(∃x .A) ·17g(t) ·19g(x);

■ g
(
π1 : Γ`∃x .A π2 : Γ,A`B

∃E
B

)
=

24 ·317 ·5g(π1 : Γ`∃x .A) ·7g(π2 : Γ,A`B) ·13g(B) ·19g(x);
,→
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Coding proofs

,→ (Coding proofs)
■ g

(
ax∀x .x = x

)
= 24 ·318 ·13g(∀x .x=x) ·19g(x);

■ g
(

ax∀x ,y .x = y ⊃ y = x
)
= 24 ·319 ·13g(∀x ,y .x=y⊃y=x) ·19g(x ,y);

■ g
(

ax∀x ,y ,z .x = y ∧y = z ⊃ x = z
)
=

24 ·320 ·13g(∀x ,y ,z .x=y∧y=z⊃x=z) ·19g(x ,y ,z);

■ g
(
π1 : Γ`A[t/x ] π2 : Γ` t = r

ax
A[r/x ]

)
=

24 ·321 ·5g(π1 : Γ`A[t/x ]) ·7g(π2 : Γ`t=r) ·13g(A[r/x ]) ·19g(x);
■ g

(
ax∀x1, . . . ,xn.∃!z .z = f (x1, . . . ,xn)

)
=

24 ·322 ·13g(∀x1,...,xn .∃!z .z=f (x1,...,xn)) ·17g(f (x1,...,xn)) ·19g(x1,...,xn ,z);
■ g

(
ax∀x .S x 6= 0

)
= 24 ·323 ·13g(∀x .S x 6=0) ·19g(x);

,→
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Coding proofs

,→ (Coding proofs)
■ g

(
ax∀x ,y .S x = S y ⊃ x = y

)
= 24 ·324 ·13g(∀x ,y .S x=S y⊃x=y) ·19g(x ,y);

■ g
(

ax∀x .0+x = x
)
= 24 ·325 ·13g(∀x .0+x=x) ·19g(x);

■ g
(

ax∀x ,y .S x +y = S(x +y)
)
= 24 ·326 ·13g(∀x ,y .S x+y=S(x+y)) ·19g(x ,y);

■ g
(

ax∀x .0 ·x = 0
)
= 24 ·327 ·13g(∀x .0·x=0) ·19g(x);

■ g
(

ax∀x ,y .S x ·y = x ·y +y)
)
= 24 ·328 ·13g(∀x ,y .S x ·y=x ·y+y)) ·19g(x ,y);

■ g
(

ax
A[0/x ]∧ (∀x .A⊃A[S x/x ])⊃∀x .A

)
=

24 ·329 ·5g(A) ·13g(A[0/x ]∧(∀x .A⊃A[S x/x ])⊃∀x .A) ·19g(x);
■ if A ∈ Γ is a proof by assumption, g(A)= 24 ·330 ·5g(A) ·7g(Γ) ·13g(A) with
Γ= {

γ1, . . . ,γn
}
and g(Γ)= g(γ1, . . . ,γn).

,→
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Coding proofs

,→ (Coding proofs)
It should be remarked that g(e1, . . . ,en), when ei are not numbers should be
read as g(g(e1), . . . ,g(en)), i.e., the code of the sequence of codes of the
elements.

Although it is long and tedious to verify, g is injective, computable, and g−1

is recursive. Also, the coding function is written down to make easy to tell
pieces apart. For example, the code of the conclusion is always the exponent
of the 13 factor.
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Numeral

Definition 5.6 (Numeral)
The numeral pAq of a formula A is defined as pAq= Sg(A)(0), that is, the
code of A written in the syntax of Peano arithmetic.
Similarly, the numeral of a term t is ptq= Sg(t)(0), the numeral of a proof π
is pπq= Sg(π)(0), and the numeral of a sequence is
pe1, . . . ,enq= Sg(e1,...,en)(0).

Numerals allow to internalise the codes: we can, indirectly, speak of a formula
(term, proof, sequence) by stating a property of its code. As soon as the
property does not rely on the value, but on the “meaning” of the code, this is
a perfectly reasonable way to proceed.
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Fixed point lemma

Lemma 5.7 (Fixed point)
Let Ξ be a theory in which every (primitive) recursive function is
representable, and let A be a formula such that FV(A)= {y }. Then, there is a
formula δA such that FV(δA)=; and `Ξ δA =A[pδAq/y ].

Proof. (i)
Let ∆F be the map from formulae to formulae defined by
∆F (B)≡∃x1.x1 = pBq∧B. This function is total, computable and injective.
Thus, the map ∆N defined by ∆N(g(B))= g(∆F (B)) is total on the image of
g , (primitive) recursive, and injective.
By hypothesis, there is a formula ∆ with FV(∆)= {x ,y } such that ∆
represents the function ∆N.
Let F ≡∃y .∆[x1/x ]∧A. Clearly, FV(F )= {x1}. Also, let δA =∆F (F ), that is,
δA ≡∃x1.x1 = pFq∧F . Thus, FV(δA)=;. ,→
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Fixed point lemma

,→ Proof. (ii)
Since ∃y .∆[pFq/x ]∧A implies ∃x1,y .∆[x1/x ]∧A with x1 = pFq, we can prove
that ∃x1.x1 = pFq∧∃y .∆[x1/x ]∧A, which is just δA, Hence, we have shown
that ` (∃y .∆[pFq/x ]∧A)⊃ δA.
Conversely, δA ≡∃x1.x1 = pFq∧∃y .∆[x1/x ]∧A, so δA implies
∃x1,y .∆[x1/x ]∧A with x1 = pFq, thus we can prove that ∃y .∆[pFq/x ]∧A.
Hence, we have shown that ` δA ⊃ (∃y .∆[pFq/x ]∧A), thus δA and
∃y .∆[pFq/x ]∧A are equivalent.
But ∆ represents ∆N, so Ξ allows to prove, for each n ∈N,
`∆ [Sn(0)/x ]= (y = S∆N(n)(0)). Specialising to n= g(F ), we obtain
`∀y .∆[pFq/x ]= (y = S∆N(g(F ))(0)). ,→
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Fixed point lemma

,→ Proof. (iii)
So the previous equivalence ` δA = (∃y .∆[pFq/x ]∧A) allows to derive
` δA = (∃y .y = S∆N(g(F ))(0)∧A).

Evidently, we can prove `A
[
S∆N(g(F ))(0)/y

]
=

(
∃y .y = S∆N(g(F ))(0)∧A

)
,

thus we can immediately prove ` δA =A
[
S∆N(g(F ))(0)/y

]
.

But pδAq= Sg(δA)(0)= Sg(∆F (F ))(0)= S∆N(g(F )))(0). Thus, the proof above
can be rephrased as ` δA =A[pδAq/y ].
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Fixed point lemma

Let us look at the proof in another order
Proof. (i)
We need to prove that there is δA such that ` δA =A[pδAq/y ]. The idea is
to synthesize δA.
Let us see A as a transformation ψ : Formulae→ Formulae such that
ψ(B)=A[pBq/y ]. Our objective is to prove ` δA =ψ(δA).
It would be better to separate A from substitution: more generally, we show
`B[k/z ]= (∃z .z = k ∧B). One direction is obvious for ∃E , and subst, the
other is easy: refl, then ∃I, ∃E and subst give B by hyothesis, then ∧I and ∃I
complete the proof. ,→
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Fixed point lemma

,→ Proof. (ii)
Define ∆F , which separate a formula from the substitution of its coding:
∆F (B)≡∃x1.x1 = pBq∧B. Hence, `B[k/z ]=∆F (B).
We imagine that it’s easier if δA =∆F (F ). The idea is to synthesize F and
then define δA as ∆F (F ).
∆F (F ) is a total computable function. If we codify the formulae with the
coding g we obtain ∆N : g(Formulae)→N, with ∆N(g(B))≡ g(∆F (B)). This
function ∆N is computable, hence representable. Let it be represented by the
formula ∆. ,→
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Fixed point lemma

,→ Proof. (iii)
Suppose the existence of δA and calculate:
A[pδAq/y ]=A[p∆F (F )q/y ]=A[p∆N(g(F ))q/y ]=∃y .(y = p∆N(g(F ))q)∧A=
∃y .(y =∆(pFq))∧A=∃x1.(x1 = pFq)∧ (∃y .∆[x1/x ]∧A).
Hence, the choice of F is obvious: F ≡∃y .∆[x1/x ]∧A.
Indeed, the previous chain of equalities becomes
A[pδAq/y ]=∃x1.(x1 = pFq)∧F =∆F (F )= δA, which completes the
proof.
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Provability predicate

Definition 5.8 (Provability predicate)
The formula D with FV(D)= {x ,y } is defined as
D ≡∃z .13y ·z = x ∧ isExpr(x)∧ isExpr(y)∧ isProof(x)∧ isFormula(y).
The provability predicate T is the formula ∃x .D, having FV (T )= {y }.

Clearly, D[pπq/x ,pAq/y ] holds exactly when A is the conclusion of the proof
π : `A. And, consequently, T [pAq/y ] holds when A is provable.
The formulae isExpr(x), isExpr(y), isProof(x), and isFormula(y) in the
definition of D have not been made explicit. While isProof(x) can be defined
as ∃z .24 ·z = x , and isFormula(y) can be defined as
(∃z .23 ·z = x)∧¬isProof(x), the definition of isExpr comes from the fact that
the collection of codes forms a recursive set. It could be written down in an
explicit way, but it is a cumbersome formula.
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Incompleteness theorem

Theorem 5.9 (Gödel’s Incompleteness Theorem)
Let Ξ be an effective theory which is consistent, and able to represent all the
recursive functions. Then, there is a closed formula G such that Ξ 6`G and
Ξ 6` ¬G.
Proof.
Consider the formula ¬T [x/y ]: applying the fixed point lemma, there is G
such that FV(G)=; and `G =¬T [pGq/y ].
Assume there is π : `G . Then `¬T [pGq/y ]. But, because π : `G , it holds
that `D[pπq/x ,pGq/y ], and thus `∃x .D[pGq/y ], that is, `T [pGq/y ],
making the theory non consistent. Hence 6`G .
Oppositely, suppose there is π : `¬G . Then `T [pGq/y ] by definition of G ,
so `∃x .D[pGq/y ]. But this means that there exists θ : `G with x = pθq.
Thus, again, we get a contradiction. Thus 6` ¬G .
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Conditions on T

Notice that the three conditions on the theory Ξ are necessary:
■ The collection of all the true formulae on the natural numbers with the
same signature as Peano arithmetic is able to represent all the partial
recursive functions, and it is consistent. Evidently, it is not effective.
However, it is also complete. Hence, to apply the incompleteness theorem
the theory must be effective.

■ The empty theory is effective and consistent, and it corresponds to the
pure logic, which is complete. Evidently, it does not allow to represent the
partial recursive functions.

■ The theory containing all the formulae which could be written in the
language of Peano arithmetic is clearly effective and represents all the
recursive functions. Clearly, it is not consistent, and, obviously, it is
complete in a trivial sense.
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Provability predicate

Notice that in the proof of Theorem 5.9 we implicitly used that `T [pAq/y ]
holds when A is provable.
Remember that `∃x .D[pAq/y ] means that there is a code x for a proof.
Since the codes are natural numbers, we suppose that x is interpreted in a
natural. Which is obvious in the standard models for Peano arithmetic, but
we have seen that the non standard models contain elements which aren’t
numbers.
Hence, in the standard model `T [pAq/y ], `∃x .D[pAq/y ] and “A is
provable” are equivalent, while this is not clear in non standard models.
Hence, to use the provability predicate T it becomes useful to study its
properties.
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Properties of provability

Proposition 5.10
For any pair of formulae A and B in Peano arithmetic,
1. `T [pAq/y ] if and only if `A;
2. `T [pA⊃Bq/y ]∧T [pAq/y ]⊃T [pBq/y ];
3. `T [pAq/y ]=T [pT [pAq/y ]q/y ];
4. ` (T [pAq/y ]∧T [pBq/y ])=T [pA∧Bq/y ];
5. if `A⊃B then `T [pAq/y ]⊃T [pBq/y ];
6. if ` (T [pAq/y ]∧A)⊃B, then `T [pAq/y ]⊃T [pBq/y ].

These properties show that (i) the provability predicate T allows to prove A
whenever there is a proof that A is provable; (ii) it acts naturally with respect
to implication and conjunction; (iii) proving provability is equivalent to prove
that provability is provable.
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Properties of provability

Proposition 5.11
In Peano arithmetic, if `A=¬T [pAq/y ], then `T [pAq/y ]=T [p⊥q/y ].

Again, without proving it, the proposition says that every formula, which
behaves like Gödel’s G , is provable if and only if ⊥ is provable, a fact that
captures the content of Theorem 5.9. But, and this is important, the
proposition proves that this fact holds inside the theory, which is not obvious.
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Second incompleteness theorem

Theorem 5.12 (Gödel’s second incompleteness theorem)
There is no provable formula C in Peano arithmetic which codes the
consistency of the theory, i.e., such that `C ⊃¬T [p⊥q/y ].

Proof.
Suppose there is C such that `C and `C ⊃¬T [p⊥q/y ]. Then,
`¬T [p⊥q/y ], which means that ⊥ is not provable, that is, Peano arithmetic
cannot contain a contradiction, hence it is consistent.
From Theorem 5.9, there is a formula G such that `G =¬T [pGq/y ], but
6`G . By Proposition 5.11, `T [pGq/y ]=T [p⊥q/y ], so 6` ¬T [p⊥q/y ]. Thus,
we have a contradiction, showing that C cannot exist.
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Mathematical meaning

The incompleteness theorems closes the quest for a universal, self-contained
foundation of Mathematics which is able to prove its own consistency. Simply,
such a system cannot exist.
Nevertheless, these theorems opened the way to many developments, and to
some of the other fundamental results in 20th Century:
■ the effective construction of non-computable functions
■ the idea of coding lead to reason “modulo a coding function”, which has
been influential in algebra, algebraic geometry, algebraic topology, number
theory, . . .

■ examples of independent statements arose in many fields, and they shed
lights to a variety of hidden aspects of apparently clean notions.
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Foundational consequences

Having a mathematical theory T which is powerful enough to represent Peano
arithmetic has the consequence that we cannot prove its consistency within T .
We need a theory T ′, containing T , and more powerful.
This fact led to the development of many hierarchies of formal systems to
classify the power of mathematical theories: we scratched just the surface, by
showing that the consistency of Peano arithmetic can be proved in a stronger
system. But, how much stronger? Since the proof of Gödel’s results, much
deeper analyses have been conducted, and nowadays this part of Logic is a
complex, intricate, difficult field on its own.
In constructive mathematics, the same fact led to doubt that “truth” is the
right concept to analyse, and there are approaches favouring the notion of
provability as the real foundation of Mathematics. This has a number of
consequences, which we do not want to discuss here.
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Understanding

For a very long time, mathematicians regarded the incompleteness theorems
as strange beasts: something which is important, but, essentially, with no
influence in the mathematical practise.
For example, the textbook of Bell and Machover we referred to many times,
explicitly says that the sentences which are not provable in Peano arithmetic
are not important in arithmetic, because they have no “arithmetical” content,
but just a logical content. This is true for the sentence G , and for most other
sentences we can construct within the logical analysis.
Unfortunately, there are purely arithmetical properties of genuine interest for
mathematicians not working in logic, which are independent from Peano
arithmetic.

( 133 of 205 )



Incompleteness and computability

The incompleteness results have proved to be extremely useful in the study of
computability. In fact, using the coding techniques developed to establish
Gödel’s theorem, a number of limiting results about what is computable have
been derived.
Also, analogously to the notion of independence, it is possible to develop
hierarchies of machines, computing modulo an oracle, that allow to classify
the difficulty in solving problems, either by showing their distance to what is
computable, e.g, the arithmetic hierarchy, or comparing them to efficient
procedures to solve problems, e.g., the polynomial hierarchy.
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Incompleteness and computability

As an example we show that, fixed an enumeration {φi } of all recursive
functions,

Proposition 5.13
The set H = {i ∈N :φi (i)is defined } is not recursive.

Proof.
Suppose it is. Then, its characteristic function χH has to be recursive and
total. So

f (x)=
{
0 when χH(x)= 0
1+φx (x) otherwise

has to be recursive and total, too. Thus, there is j ∈N such that f =φj .
If f (j)= 0, then φj(j)= 0, so χH(j)= 0, which makes j 6∈H, that is,
φj(j)= f (j) is not defined, despite it has the value 0. Hence, f (j) 6= 0.
So f (j)= 1+φj(j)= 1+ f (j), thus 0= 1. So, H cannot be recursive.
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Natural incompleteness

Theorem 5.14 (Paris, Harrington)
For all e,r ,k ∈N, there is M ∈N such that, for every
f : {F ⊆ {0, . . . ,M} : |F | = e} → {0, . . . ,r }, there is H ⊆ {0, . . . ,M} such that
■ |H | ≥max{k ,minH}, and
■ exists v ≤ r such that, for all F ⊆H with |F | = n, f (x)= v for each x ∈F .

By using the Infinite Ramsey Theorem, it is not too difficult to derive a value
M ∈N which makes the statement true on naturals. This proof is carried out
either in second-order arithmetic, with the full induction principle, or in a
suitable set theory. Nevertheless, it is possible to show, within Peano
arithmetic, that the combinatorial principle in Theorem 5.14 implies the
consistency of Peano arithmetic, thus it is impossible to prove in that theory,
according to Gödel’s second incompleteness theorem.
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Natural incompleteness

Actually, a simplified version of Theorem 5.14 suffices:

Theorem 5.15
For all n ∈N, there is M ∈N such that, for every function
f : {F ⊆ {0, . . . ,M} : |F | = n} → {0,1}, there is H ⊆ {0, . . . ,M} for which, for all
F ⊆H with |F | = n, f (F )= {0}, and |H | > n(2nminH +1).

This theorem and the previous one are natural in the sense that, changing the
first condition in Theorem 5.14 to |H | ≥ k, we get the Finite Ramsey
Theorem, which is provable inside Peano arithmetic, and which is the starting
point for a large branch of Combinatorics.
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Natural incompleteness

Another important theorem from a different branch of combinatorics is
independent from Peano arithmetic: it holds in the standard model, but we
cannot prove it in the theory. This is the famous Kruskal’s theorem on trees.
A simplified version suffices to yield the independence result.

Theorem 5.16
There is some n ∈N such that, if T1, . . . ,Tn is a finite sequence of trees, where
Tk has k +n vertices, then, for some i < j , there is an injective map
f : Ti →Tj between the vertices of the trees which preserves paths.

The independence proof for this theorem follows a different pattern: it is
possible to show that any function which provably exists in Peano arithmetic
cannot grow too fast, but the above theorem allows to construct a function
which grows even faster. And this suffices to establish the fact that the
theorem is unprovable in Peano arithmetic.
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Natural incompleteness

Kruskal’s Theorem plays an important role in the algebra of well quasi orders,
a topic which has shown relevance in proving the termination of algorithms,
so the above independence result has a direct, negative, application to
Computer Science, for example.
In this sense, Kruskal’s Theorem is “natural” and practically significant.
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Incompleteness in set theory

Axiom 5.17 (Choice)
For any non empty family {Xi }i∈I of non empty sets such that Xi ∩Xj =; for
any i , j ∈ I, i 6= j , there exists a function f : I →⋃

i∈I Xi such that f (i) ∈Xi for
every i ∈ I.
The meaning is that, whenever we are given such a family, we have the ability
to make a choice that simultaneously pick an element from each set.
Some important results in Mathematics require the Axiom of Choice to be
proved: as a small collection of examples, take
■ every non empty vector space has a base;
■ every field has an algebraic closure, which is unique modulo isomorphisms;
■ the notion of adjunction in category theory;
■ the compactness theorem in first order logic.
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Incompleteness in set theory

The Axiom of Choice, the Continuum Hypothesis, and the Generalised
Continuum Hypothesis are independent from ZF.
All these statements are “natural”, as they state properties of sets which are
inherently of interest, either because of their consequences, or because they
impose a regular structure over the objects we want to study.
In fact, the independence results in set theory and in Peano arithmetic are
related.
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Ordinal analysis

There is a branch of proof theory devoted to study the “power” of deductive
systems.
This is a deep, delicate, difficult, and complex part of logic, still in
development: it is sometimes referred to as “reverse mathematics” when the
goal is to find the minimal theory in which a given statement can be shown to
hold.
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Syllabus

Proofs and computations:
■ λ calculus
■ the simple theory of types
■ propositions as types
■ normalisation
■ Martin-Löf type theory
■ Homotopy type theory
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λ-calculus

The λ-calculus is a family of formal systems, based on Alonzo Church’s work
in the 1930s. These systems are deputed to describe computable functions
using the simplest syntax. Surprisingly, not only they describe computable
functions, but, when equipped with types, they show a hidden link between
logic and computability, which is what is mainly of interest for us.
We will introduce the λ-calculus, its simplest typed version and then study
some more recent developments. Our aim is to illustrate the general aspects
of the theory and to derive a few results.
In many cases, we will avoid proving the results we will introduce. This is
done on purpose: the simplicity of the formal system has as a natural
counterpart a deep and complex technical development.
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λ-calculus

Definition 6.1 (λ-term)
Fixed a set V of variables, which is both infinite and recursive, a λ-term is
inductively defined as:
■ any x ∈V is a λ-term, and FV(x)= {x };
■ if M and N are λ-terms, so is (M ·N), called application, and
FV(MN)=FV(M)∪FV(N);

■ if x ∈V and M is a λ-term, so is (λx .M), called abstraction, and
FV(λx .M)=FV(M) \ {x }.

The set FV(M) is called the set of free variables in M, and the variables in M
not occurring in FV(M) are said to be bound.

Example 6.2
(λx .x) is a λ-term with no free variables, representing the identity function.
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λ-calculus

To simplify notation, we introduce a number of conventions:
■ outermost parentheses are not written: λx .x instead of (λx .x);
■ a sequence of consecutive abstraction is grouped: λx ,y .x ·y instead of
λx .(λy .x ·y);

■ we treat application as a product, omitting the dot: xy instead of x ·y ;
■ we assume application associates to the left: xyz instead of (xy)z .
Also, we use the term combinator to denote a λ-term having no free variables.

Example 6.3
The following are combinators
■ I ≡λx .x ;
■ K ≡λx ,y .x ;
■ S ≡λx ,y ,z .(xz)(yz);
■ Ω≡ (λx .xx)(λx .xx).
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λ-calculus

Definition 6.4 (Substitution)
For any M, N λ-terms, and x variable, M[N/x ] is the substitution of x with
N in M, defined by induction on M as:
■ x [N/x ]≡N;
■ y [N/x ]≡ y , when x 6≡ y ;
■ (PQ)[N/x ]≡ (P[N/x ])(Q[N/x ]);
■ (λx .P)[N/x ]≡λx .P;
■ (λy .P)[N/x ]≡λy .P[N/x ], when x 6≡ y and y 6∈FV(N);
■ (λy .P)[N/x ]≡λz .(P[z/y ])[N/x ], when x 6≡ y and y ∈FV(N) and
z 6∈FV(P)∪FV(N).

In the last clause, the z variable is said to be new, and it is always possible to
choose a z which satisfies the constraint.
The purpose of the last clause is to prevent variable capturing.
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λ-calculus

Definition 6.5 (α-equivalence)
The λ-terms M and N are α-equivalent, M =α N, when
■ M ≡N;
■ M ≡PQ, N ≡P ′Q′, and P =α P ′ and Q =α Q′;
■ M ≡λx .P, N ≡λx .P ′, and P =α P ′;
■ M ≡λx .P and N ≡λy .P[y/x ]

So, two λ-terms are α-equivalent when they differ for the names of bound
variables only.
It is immediate to see that α-equivalence is an equivalence relation, but it is
also a congruence with respect to substitution:

Proposition 6.6
If M =αM ′ and N =α N ′, then M[N/x ]=αM ′[N ′/x ].
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λ-calculus

Definition 6.7 (β-reduction)
The binary relation between λ-terms M .1,βN, M β-reduces to N in one step,
holds if and only if M ≡M ′[(λx .P) ·Q/z ] and N ≡M ′[(P[Q/x ])/z ].
We say that M β-reduces to N, M .βN, when there is a finite sequence
P1, . . . ,Pn such that M ≡P1, N ≡Pn and, for each 1≤ i < n, Pi .1,βPi+1.

In the λ-calculus, computation is performed by β-reduction.

Definition 6.8 (β-normal form)
A term N is said to be in β-normal form when it does not contain any
subterm of the form (λx .P)Q.
With respect to computations, λ-terms in β-normal form represent the values.
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λ-calculus

Theorem 6.9 (Church-Rosser)
If M.βP and M.βQ, then there is a λ-term R such that P.βR and Q.βR.

Corollary 6.10
If M .βN and N is a β-normal form, then N is unique up to α-equivalence.

The Church-Rosser Theorem and its corollary say that, although the
computation in λ-calculus is non-deterministic, the result, when it exists, is
uniquely determined.

Definition 6.11 (β-equality)
We say that P is β-equivalent to Q, P =β Q, when there is a finite sequence
R1, . . . ,Rn such that P ≡R1, Q ≡Rn, and, for all 1≤ i < n, Ri .1,βRi+1, or
Ri+1.1,βRi , or Ri =α Ri+1.
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λ-calculus

Theorem 6.12 (Fixed point)
There is a combinator Y such that Yx =β x(Yx).

Proof.
Let U ≡λu,x .x(uux), and let Y≡UU. Then
Yx ≡ (λu,x .x(uux))Ux .β (λx .x(UUx))x .β x(UUx)≡ x(Yx).

The proof of the fixed point theorem as above, is due to Alan Turing.
The fixed point theorem says that, every λ-term, when thought of as a
function, has a fixed point which is calculated by the Y combinator. This is
an important property which suggests that each function which can be
represented as a λ-term, has to be continuous.
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Representable functions

Definition 6.13 (Numerals)
For every n ∈N, the Church numeral n is a λ-term inductively defined as:
■ 0=λx ,y .y ;
■ n+1=λx ,y .x(nxy).

Definition 6.14 (Representable functions)
Let f : Nk →N be a partial function. A λ-term F is said to represent the
function f when
■ for all n1, . . . ,nk ∈N, if f (n1, . . . ,nk)=m, then Fn1, . . . ,nk =m;
■ for all n1, . . . ,nk ∈N, if f (n1, . . . ,nk) is undefined, then Fn1, . . . ,nk has no
β-normal form.

Theorem 6.15
Every partial recursive function can be represented in the λ-calculus.
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Representable functions

The proof of the theorem is difficult beyond the aim of this course. But we
will show a few examples to justify it.

Example 6.16
The successor function is represented by λx ,s ,z .s(xsz).
Addition is represented by λx ,y ,s ,z .xs(ysz).
Multiplication is represented by λx ,y ,s .x(ys).
Exponentiation is represented by λx ,y .yx

Example 6.17
The Boolean values > and ⊥ are represented as λx ,y .y and λx ,y .x ,
respectively.
Then, ‘if x then y else z ’ is represented by λx ,y ,z .xzy . In fact
■ if ⊥ then A else B ≡ (λx ,y ,z .xzy)(λx ,y .x)AB =β

(λy ,z .(λx ,y .x)zy)AB =β (λy ,z .z)AB =β B, while
■ if > then A else B ≡ (λx ,y ,z .xzy)(λx ,y .y)AB =β

(λy ,z .(λx ,y .y)zy)AB =β (λy ,z .y)AB =β A.
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Representable functions

To get a clue why these representations work, we could read them as
computations over logical structures. For example, natural numbers are
inductively defined from 0 and the successor. Hence, a model for the naturals
is specified when we provide a set together with a way to interpret 0 as some
specific element, and the successor as an injective function which transforms
an element into another.
Consider 0≡λx ,y .y : this is a function from the model which provides an
element of the model. The model is specified by providing the specification of
the successor and the specification of zero. The result is the specification of 0.
Consider n+1≡λx ,y .x(nxy): since n transforms a model into a number, the
term nxy evaluates to n in the model (x ,y). But x stands for the successor
function, so we are taking the successor of n in the model.
Thus, x +y is calculated by interpreting x in a model where the successor
function is given, but the zero element is ysz , i.e., the number which stands
for y in the model.
Similarly, the product xy is calculated by interpreting x in a model where the
successor function moves by y steps at once.
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Simple theory of types

Definition 6.18 (Type)
Fixed a denumerable set VT of type variables, a type is inductively defined as
follows:
■ x ∈VT is a type;
■ 0 and 1 are types;
■ if α and β are types, so are (α×β), (α+β), and (α→β).

As usual, we omit parentheses when they are not strictly needed: × binds
stronger that +, and + binds stronger than →, so α×β+γ→ (α+γ)× (β+γ)
stands for ((α×β)+γ)→ ((α+γ)× (β+γ)).
A type is used to constrain the main entity of interest in the theory of types,
the term.
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Simple theory of types

Definition 6.19 (Term)
Fixed a family {Vα}α of variables, indexed by the collection of types, such
that, for each α, Vα is denumerable and distinct from the set of type
variables, and such that Vα∩Vβ =; whenever α 6=β, a term t : α of type α,
along with the set of its free variables, is inductively defined as:
■ if x ∈Vα for some type α, x : α is a term, and FV(x : α)= {x : α};
■ ∗ : 1 is a term and FV(∗ : 1)=;;
■ for each type α, �α : 0→α is a term and FV (�α : 0→α)=;;
■ if A : α and B : β are terms, 〈A,B〉 : α×β is a term and
FV(〈A,B〉 : α×β)=FV(A : α)∪FV(B : β);

■ if A : α×β is a term, so are π1A : α and π2A : β, and
FV(π1A : α)=FV(π2A : β)=FV(A : α×β);

,→
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Simple theory of types

,→ (Term)

■ if A : α is a term, then, for any type β, iβ1 A : α+β and iβ2 A : β+α are
terms and FV(iβ1 A : α+β)=FV(iβ2 A : β+α)=FV(A : α);

■ if C : α+β, A : α→ γ, and B : β→ γ are terms, so is δ(C ,A,B): γ, and
FV(δ(C ,A,B): γ)=FV(C : α+β)∪FV(A : α→ γ)∪FV(B : β→ γ);

■ if A : β is a term and x ∈Vα, then λx : α.A : α→β is a term and
FV(λx : α.A : α→β)=FV (A : β) \ {x : α};

■ if A : α and B : α→β are terms, then B ·A : β is a term and
FV(B ·A : β)=FV (A : α)∪FV(B : α→β).

Terms represent the primitive computational statements.
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Simple theory of types

Terms can be reduced according to the following rules, where it is assumed
that both sides of the equalities are correctly typed:
■ π1〈A,B〉 =A;
■ π2〈A,B〉 =B;
■ 〈π1A,π2A〉 =A;
■ (λx : α.B) ·A=B[A/x ], the act of substituting A for x ;
■ λx : α.(F ·x)=F , when x : α 6∈FV(F : α→β);
■ δ(i1C ,A,B)=A ·C ;
■ δ(i2C ,A,B)=B ·C .
It is clear that these rules satisfy the requirements on computable functions.
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Simple theory of types

Definition 6.20 (Strongly normalisable)
A term A : α is strongly normalisable if every reduction sequence starting from
it terminates.

Theorem 6.21 (Strong normalisation)
All the terms in the simple theory of types are strongly normalisable.

Structure of the proof by Girard:
■ for each type α, inductively define a set R(α) of reducible terms;
■ if A ∈R(α), then A is strongly normalisable;
■ if A : α, then A ∈R(α).
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Simple theory of types

The simple theory of types can be extended with natural numbers, whose
behaviour is expressed by the primitive recursion schema, obtaining Gödel’s
system T .
Girard’s technique allows to prove that Gödel’s system T is strongly
normalisable. This result implies the consistency of Peano arithmetic.
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Simple theory of types

If we restrict to the subsystem whose types are those generated by type
variables, → and ×, and whose terms are, correspondingly, the variables, and
those of the form λx : α.A : α→β, called abstractions, A ·B : β, called
applications, 〈A,B〉 : α×β, called pairs, π1A : α and π2A : β, called
projections, we get a subsystem of special interest.
In fact, if we interpret × as the Cartesian product, and → as the function
space, we can easily derive a representation of the natural numbers, together
with the operations of addition, multiplication and exponentiation, the
Boolean values, the if-then-else construction, and so on.
In fact, these representation are nothing but the same we used for the pure,
non-typed λ-calculus.
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Propositions as types

If we put side by side propositional logical formulae and types in the simple
theory of types, we get:

types formulae
variable variable

0 ⊥
1 >

α×β α∧β
α+β α∨β
α→β α⊃β

This correspondence shows that we can translate any logical formula in a type
and any type in a formula, by a one-to-one map.
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Propositions as types

If we put side by side propositional proofs in the intuitionistic natural
deduction system, and terms in the simple theory of types, we get:

proof assumption >I ⊥E ∧I ∧E1,2 ∨I1,2 ∨E ⊃I ⊃E
term variable ∗ �α 〈_,_〉 π1,π2 iα1 , iα2 δ λ ·

There is an evident one-to-one correspondence, which perfectly matches the
one on types.
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Propositions as types

Let’s examine a few examples:
■ if A : α and B : β are terms, so is 〈A,B〉 : α×β becomes

····· A
α

····· B
β

∧I
α∧β

■ if A : β is a term and x : α a variable, then λx : α.A : α→β becomes

[α]∗
····· A
β

⊃I∗
α⊃β

where the label ∗ stands for x .
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Propositions as types

■ if A : α is a term, so is iβ1 (A): α+β becomes

····· A
α

∨I2
α∨β

Notice that iβ1 (A) has two labels 1 and β which allow to keep track of the
types from which it is constructed and to distinguish the two inclusions
iβ1 (A): α+β and iγ1 (A): α+γ. This emphasizes the constructive nature of
the theory of types.

( 171 of 205 )



Propositions as types

The correspondence illustrated so far is known as the propositions-as-types
interpretation, and also as the Curry-Howard isomorphism.
At a first glance, the simple theory of types is just a way to write proofs and
formulae as linear expressions instead of adopting the tree-like syntax of
natural deduction.
But the logical syntax is coupled with a semantics, and the type theory with a
computational meaning, given by the reduction rules.
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Computations, logically

Since every formal proof in intuitionistic logic corresponds to a typed term,
and typed terms are also λ-terms, each proof is a program which computes
something.
It is possible to associate to each proof an object, which is an evidence of its
type, or its conclusion, if you prefer. So, the evidence of A∧B is a pair of
evidences for A and B; the evidence of A∨B is a pair (w ,e), with w ∈ {1,2}
telling us which disjunct holds, and e an evidence for it; the evidence of A⊃B
is a function mapping any evidence of A into an evidence of B.
These evidences are the intermediate results of the computation performed by
the λ-term associated to the proof. So, in a constructive system, proving a
statement is, essentially, equivalent to write a computer program satisfying a
specification given by the conclusion.
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Proofs, computationally

Since typed terms are proofs under the correspondence, we can reduce them
to a normal form. Formalising this process leads to state that every proof
possesses a normal form.
Thus, considering any proof π : `A∨B, it can be reduced to a proof
π′ : `A∨B in normal form, whose last step is either an instance of ∨I1 or
∨I2. Hence, the conclusion of the last but one step would be either A or B.
Similarly, considering any proof π : `∃x : s .A, it can be reduced to a proof
π′ : `∃x : s .A in normal form, whose last step is an instance of ∃I. Hence,
the conclusion of the last but one step would be A[t/x ] for some term t,
providing a witness to the existential statement.
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An auxiliary result

Lemma 6.22
If π : Γ∪ {A} `T B and θ : Γ`T A, then there is a proof ν : Γ`T B.

Proof. (i)
By induction on the structure of the proof π.
■ if π is an instance of the assumption rule either B ∈ Γ, so ν coincides with
π, which does not depend on A, or B ≡A, thus ν= θ.

■ if π is an instance of the axiom rule, B ∈T , so ν=π, which does not
depend on A.

■ if π is an instance of >-introduction, B ≡>, so ν=π, which does not
depend on A.

■ if π is an instance of ⊥-elimination, by induction hypothesis, there is
ξ : Γ`T ⊥, so applying the ⊥-elimination rule to ξ gives the required ν.

,→
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An auxiliary result

,→ Proof. (ii)
■ if π is an instance of ∧-introduction, B ≡C ∧D, and, by induction
hypothesis, there are ξ : Γ`T C and µ : Γ`T D, so the required ν is
obtained by applying ∧-introduction to ξ and µ.

■ if π is an instance of ∧1-elimination, by induction hypothesis, there is
ξ : Γ`T B∧C , so ν is obtained by applying ∧1-elimination to ξ.

■ if π is an instance of ∧2-elimination, by induction hypothesis, there is
ξ : Γ`T C ∧B, so ν is obtained by applying ∧2-elimination to ξ.

,→
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An auxiliary result

,→ Proof. (iii)
■ if π is an instance of ∨1-introduction, then B ≡C ∨D and, by induction
hypothesis, there is ξ : Γ`T C , so ν is obtained by applying
∨1-introduction to ξ.

■ if π is an instance of ∨2-introduction, then B ≡C ∨D and, by induction
hypothesis, there is ξ : Γ`T D, so ν is obtained by applying
∨2-introduction to ξ.

■ if π is an instance of ∨-elimination, by induction hypothesis, there are
ξ : Γ`T C ∨D, µC : Γ∪ {C } `T B, and µD : Γ∪ {D} `T B, so, applying
∨-elimination to ξ, µC , and µD the required ν is constructed.

,→
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An auxiliary result

,→ Proof. (iv)
■ if π is an instance of ⊃-introduction, then B ≡C ⊃D and, by induction
hypothesis, there is ξ : Γ∪ {C } `T D, so ν is obtained by applying
⊃-introduction to ξ.

■ if π is an instance of ⊃-elimination, by induction hypothesis, there are
ξ : Γ`T C ⊃B and µ : Γ`T C , so ν is constructed applying ⊃-elimination
to ξ and µ.

■ if π is an instance of ¬-introduction, B ≡¬C and, by induction hypothesis,
there is ξ : Γ∪ {C } `T ⊥, thus ν is obtained applying ¬-introduction to ξ.

■ if π is an instance of ¬-elimination, by induction hypothesis there are
ξ : Γ`T ¬C and µ : Γ`T C , so ν is constructed applying ¬-elimination to
ξ and µ.

■ if π is an instance of the Law of Excluded Middle, B ≡C ∨¬C , so ν=π,
which does not depend on A.
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An auxiliary result

,→ Proof. (v)
■ if π is an instance of ⊃-introduction, then B ≡C ⊃D and, by induction
hypothesis, there is ξ : Γ∪ {C } `T D, so ν is obtained by applying
⊃-introduction to ξ.

■ if π is an instance of ⊃-elimination, by induction hypothesis, there are
ξ : Γ`T C ⊃B and µ : Γ`T C , so ν is constructed applying ⊃-elimination
to ξ and µ.

■ if π is an instance of ¬-introduction, B ≡¬C and, by induction hypothesis,
there is ξ : Γ∪ {C } `T ⊥, thus ν is obtained applying ¬-introduction to ξ.

■ if π is an instance of ¬-elimination, by induction hypothesis there are
ξ : Γ`T ¬C and µ : Γ`T C , so ν is constructed applying ¬-elimination to
ξ and µ.

■ if π is an instance of the Law of Excluded Middle, B ≡C ∨¬C , so ν=π,
which does not depend on A.
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Normalisation

The objective of normalisation is to eliminate the redundant steps in a proof,
and to give it a standard format, minimal, in a sense.
A natural requirement for a proof in natural deduction is that no conclusion of
an introduction rule must be the major premise of an elimination rule. The
major premise is the formula containing as principal connective, the one which
is eliminated by an elimination rule.
Also, another natural requirement is that discharged assumptions should be
used in disjunction elimination, while the false elimination rule has to derive a
conclusion which is not ⊥.
Finally, although the previous requirements seem evident, they can be hidden,
because of multiple subsequent elimination rules which can be permuted.
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Normalisation

The detour conversions are deputed to eliminate detours, i.e., redundant
elementary steps in a proof given by an introduction rule in the major premise
of an elimination rule:
■ ∧ rules:

····· p1

A

····· p2

B
∧I

A∧B
∧E1A

 
····· p1

A

····· p1

A

····· p2

B
∧I

A∧B
∧E2B

 
····· p2

B

■ ⊃ rules:
[A]∗
····· p1

B
⊃I∗

A⊃B

····· p2

A
⊃E

B

 

····· p2

A····· p1

B
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Normalisation

■ ∨ rules: ····· p1

A
∨I1A∨B

[A]∗
····· p2

C

[B]∗
····· p3

C
∨E∗

C

 

····· p1

A····· p2

C

····· p1

B
∨I2A∨B

[A]1
····· p2

C

[B]1
····· p3

C
∨E1

C

 

····· p1

B····· p3

C
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Normalisation

Since ¬A≡A⊃⊥, we do not need detour conversions for ¬ rules, as soon as
we rewrite them as instances of the ⊃ rules. The conversions for ⊃ and ∨ are
justified by Proposition 6.22, which allows to join proofs.
There are no detour conversions for ⊥ and >, since these connectives lack an
introduction and elimination rule, respectively.
It is instructive to see these conversions through the propositions-as-types
correspondence: for example, the detour conversion for ∧ becomes
π1〈p1,p2〉 = p1 and π2〈p1,p2〉 = p2. This observation shows how normalisation
in proofs is the same as deriving a normal form for a term in the simple theory
of types.
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Normalisation

Detour conversions eliminate obviously redundant steps in a proof. However,
there are instances of the disjunction elimination rule that are, in fact,
redundant, those in which one of the discharged assumptions is not used.
This fact leads to define the following simplification conversions: if, in

····· p1

A∨B

[A]1
····· p2

C

[B]1
····· p3

C
∨E1

C

either the assumption A in p2 is not used, or the assumption B in p3 is not
used, then we can use p2 or p3, respectively to prove the conclusion.
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Normalisation

····· p1

A∨B

····· p2

C

[B]1
····· p3

C
∨E1

C

 
····· p2

C

····· p1

A∨B

[A]1
····· p2

C

····· p3

C
∨E1

C

 
····· p3

C
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Normalisation

Moreover, the instances of the ⊥ elimination rule in which the conclusion is ⊥
are obviously redundant, and we can apply another simplification conversion
to eliminate them. ····· p

⊥
⊥E⊥

 
····· p
⊥

Sometimes, detours and simplifications cannot be directly applied, because
they are hidden inside a proof. This happens when we apply an elimination
rule whose major premise is an application of the disjunction elimination rule.
In those cases, we can move the disjunction elimination downwards,
eventually revealing hidden detours and simplifications. The rules to do so are
called permutation conversions.
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Normalisation

■ ∧ elimination:

····· p1

A∨B

[A]1
····· p2

C ∧D

[B]1
····· p3

C ∧D
∨E1

C ∧D
∧E1C

 
····· p1

A∨B

[A]1
····· p2

C ∧D
∧E1C

[B]1
····· p3

C ∧D
∧E1C

∨E1

C

····· p1

A∨B

[A]1
····· p2

C ∧D

[B]1
····· p3

C ∧D
∨E1

C ∧D
∧E2D

 
····· p1

A∨B

[A]1
····· p2

C ∧D
∧E2D

[B]1
····· p3

C ∧D
∧E2D

∨E1

D
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Normalisation

■ ⊥ elimination:

····· p1

A∨B

[A]1
····· p2

⊥

[B]1
····· p3

⊥
∨E1

⊥
⊥E

C

 
····· p1

A∨B

[A]1
····· p2

⊥
⊥E

C

[B]1
····· p3

⊥
⊥E

C
∨E1

C
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Normalisation

■ ⊃ elimination:

····· p1

A∨B

[A]1
····· p2

C ⊃D

[B]1
····· p3

C ⊃D
∨E1

C ⊃D

····· p4

C
⊃E

D

 

 
····· p1

A∨B

[A]1
····· p2

C ⊃D

····· p4

C
⊃E

D

[B]1
····· p3

C ⊃D

····· p4

C
⊃E

D
∨E1

D
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Normalisation

■ ∨ elimination:

····· p1

A∨B

[A]1
····· p2

C ∨D

[B]1
····· p3

C ∨D
∨E1

C ∨D

[C ]2
····· p4

E

[D]2
····· p5

E
∨E2

E

 

 
····· p1

A∨B

[A]1
····· p2

C ∨D

[C ]2
····· p4

E

[D]2
····· p5

E
∨E2

E

[B]1
····· p3

C ∨D

[C ]3
····· p4

E

[D]3
····· p5

E
∨E3

E
∨E1

E
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Normalisation

By applying all these conversions, mimicking the reduction process of the
simple theory of types, we get the following result

Theorem 6.23 (Normalisation)
Each derivation in intuitionistic natural deduction reduces to a normal
derivation, in which none of the detour, simplification and permutation
conversions can be applied.
Although we are not going the see the details of the proof, since they rely on
a complex double induction, we are able to derive a few consequences which
are relevant.

Theorem 6.24 (Subformula property)
Let π : Γ`A be a normal derivation in intuitionistic propositional logic. Then
each formula in π is a subformula of some formula in Γ∪ {A}.
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Normalisation

By looking at the proof of the Normalisation Theorem,

Corollary 6.25
Let π : Γ`A be a normal derivation in intuitionistic propositional logic. If A is
not atomic or ⊥, then the last step is an introduction rule.

An immediate consequence is that disjunction is decidable.

Corollary 6.26 (Disjunction property)
Let π : Γ`A∨B be a normal derivation in intuitionistic propositional logic.
Then, there is a subproof π′ of π whose conclusion is either A or B.

Similar results hold for intuitionistic first order logic, and, in particular

Corollary 6.27 (Explicit definability)
Let π : Γ`∃x .A be a normal derivation in intuitionistic first order logic. Then,
there is a subproof π′ of π whose conclusion is either A[t/x ] for some term t.
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Normalisation

It is important to remark that we have proved these results about
normalisation in the natural deduction system for pure propositional logic.
Choosing a different deductive system, although sound and complete, does
not necessarily lead to the same result.
Also, adding a theory, and, thus, instances of the axiom rule may lead to
alternative normalisation procedures, or to systems in which normalisation
cannot be obtained.
In these cases, the constructive nature of intuitionistic logic, stemming from
Corollaries 6.26 and 6.27, is not automatically achieved.
As an obvious counterexample, consider that classical logic is just
intuitionistic logic plus the theory {A∨¬A : A formula}.
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Variations on the theme

The simple theory of types is just the simplest type theory: many other
systems have been analysed, and many of them have a propositions-as-types
interpretation, computationally characterising some logical system.
In some cases, like in the constructive type theory, the corresponding logical
system is part of the type theory itself. This reflection allows to use such a
system to describe mathematical theories, like set theory, inside the type
system, becoming part of it. Thus, the type system acts as a universal theory,
which contains the whole mathematics representable in its logical counterpart.
This way of proceeding has recently lead to a promising approach, which
explains computation in terms of algebraic topology (and vice versa). It is
called homotopy type theory, and it is part of the contemporary frontier of
mathematical research. The basic idea is that, by adding a pair of axioms to
constructive type theory, one can interpret a computation as a path in some
homotopy space. It turns out that paths which are homotopy equivalent can
be represented by the same term.
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Martin-Löf type theory

The propositions-as-types interpretation can be extended to first order
intuitionistic logic by introducing the notion of dependent types.
The concept of function F : α→β can be extended to the case in which β has
a dependent structure: if β is a function with domain α, a function F from α

to β can be defined such that F (A): β(A) for each A : α, i.e., the codomain
of the function depends on the choice of the element in the domain.

·
·

β(A)
·F (A)

A

α

The same can be done for pairs.
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Martin-Löf type theory

Thus, are introduced
■ Πx : α.β type of the dependent functions
■ Σx : α.β type of the dependent pairs
such that, if β does not depend on A : α, then
■ Πx : α.β=α→β;
■ Σx : α.β=α×β.
This allows to extend the propositions-as-types correspondence as

types formulae
Πx : α.β ∀x ∈α.β
Σx : α.β ∃x ∈α.β
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Martin-Löf type theory

Example 6.28
A dependent pair is

Σn : NN
n

containing all the n-tuples of naturals for each n : N.

Example 6.29
An example of term of dependent product is

zeros : (Πn : NN
n)

whose terms are such that zerosn is the n-component vector (0, . . . ,0).
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Martin-Löf type theory

Martin-Löf type theory consists in the simple theory of types extended with Π,
Σ, Natural numbers and an equality type.
Naturals are defined inductively:
■ N is a type;
■ 0 : N;
■ if n : N, then succ(n): N.

Given A : α and B : α, is defined the propositional equality type A=α B by
introducing the term reflA : A=α A, stating that A is equal to itself, i.e., that
quality is reflexive.
The idea behind propositional equality is that if there is a term of type
A=α B then A and B are equal. In general A=α B is empty, but nothing
prevents that an equality type contains terms other than refl.
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Martin-Löf type theory

An important feature of Martin-Löf type theory is the notion of induction,
which generalises the one on natural numbers: to prove a statement on all
naturals, it suffices to prove it for 0 and succ(n), provided that it holds for n.
The same idea lies behind the δ term in the simple theory of types: to prove a
statement about all the terms of a certain type, it is enough to prove it for
the canonical terms.
For example, in the case of +, to prove that a type γ depending on α+β is
inhabited it is enough to show that we can construct a term of γ from
■ iβ1 A : α+β and
■ iα2 B : α+β.
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Martin-Löf type theory

This allows, for example, to prove that propositional equality is symmetric

Proposition 6.30
For every type α and every A,B : α there is a function (A=α B)→ (B =α A)
mapping P : A=α B to P−1 : B =α A such that refl−1

A ≡ reflA for each A : α.

Proof.
Given A,B : α and P : A=α B we want to construct a term P−1 : B =α A. By
induction, it is enough to do this in the trivial case in which B is A and P is
reflA; hence, P−1 has to be of type A=α A. Thus, we can just define refl−1

A as
reflA, and the general case follows by induction.
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Martin-Löf type theory

Propositional equality is also transitive, and those operations are well behaved

Proposition 6.31
For every type α and every A,B,C : α there is a function
(A=α B)→ (B =α C)→ (A=α C) mapping P : (A=α B) to Q : (B =α C) to
P ·Q : (A=α C) such that reflA · reflA ≡ reflA for each A : α.

Proposition 6.32
Let α be a type, A,B,C ,D : α, P : (A=α B), Q : (B =α C) and R : (C =α D).
Then
■ P =P · reflB and P = reflA ·P;
■ P−1 ·P = reflB and P ·P−1 = reflA;
■ (P−1)−1 =P;
■ P · (Q ·R)= (P ·Q) ·R.
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Homotopy type theory

An insight by Voevodsky and the other mathematicians behind Homotopy
type theory allowed to easily formalise some complex mathematical objects
using type theory.
A term P of a propositional equality type A=α B can be seen as a path from
A to B.

· ·
A BP

This allows, among the other things, to construct some topological spaces.

For example, the circle is constructed as the type
S1 such that base : S1 and loop : base=S1 base.
Hence the circle is constructed by a point, base,
and a path from base to base, called loop.
The paths loop−1, loop3 etc can be obtained by
inverting and composing loop. ·base

loop
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Homotopy type theory

For each type α, a type ||α|| can be constructed such that
■ for any A : α there is |A| : ||α||;
■ for any x ,y : ||α||, x =||α|| y .

This means that all the inhabitants of the type ||α|| are equal or, through the
propositions-as-types correspondence, that all the proofs of the proposition
||α|| can be identified. It is a way to translate intuitionistic logic into classical
logic.
Indeed, while it can be proved that there is a type α such that α+¬α and
¬¬α→α are not inhabited, this does not hold for truncated types.
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Exercises

1. Prove in intuitionistic propositional logic that (a⊃ (b ⊃ c))⊃ (a∧b ⊃ c)
and translate this proof into a term in the simple theory of types.

2. Show that the Axiom of Choice implies the Law of Excluded Middle
[hint: let P be a proposition, and let x be a variable not appearing in P.
Define U = {x ∈ {0,1} :P ∨ (x = 0)} and V = {x ∈ {0,1} :P ∨ (x = 1)}. There
must be a choice function on {U ,V }, hence. . . ].

3. Prove in Peano arithmetic that ∀x .(x = 0)∨ (∃y .x = Sx).
4. Show that if g and ho , . . . ,hk are representable in Peano arithmetic, so is f

obtained by substitution.
5. Show that if g is representable in Peano arithmetic, so is f obtained by

minimalisation.
6. β-reduce (λx .xxy)(λx .xxy), (λx .(λy .yx)z), and the combinator Ω.
7. Show that the reminder function is primitive recursive.
8. Show that if f (m1, . . . ,mk ,n) is primitive recursive, then the bounded sum

h(m1, . . . ,mk ,p)=Σn≤pf (m1, . . . ,mk ,n) is primitive recursive.
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